Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(23): 7004-7011, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804892

RESUMEN

Perovskite nanoplatelets (NPLs) show great potential for high-color-purity light-emitting diodes (LEDs) due to their narrow line width and high exciton binding energy. However, the performance of perovskite NPL LEDs lags far behind perovskite quantum dot-/film-based LEDs, owing to their material instability and poor carrier transport. Here, we achieved efficient and stable pure blue-emitting CsPbBr3 NPLs with outstanding optical and electrical properties by using an aromatic ligand, 4-bromothiophene-2-carboxaldehyde (BTC). The BTC ligands with thiophene groups can guide two-dimensional growth and inhibit out-of-plane ripening of CsPbBr3 NPLs, which, meanwhile, increases their structural stability via strongly interacting with PbBr64- octahedra. Moreover, aromatic structures with delocalized π-bonds facilitate charge transport, diminish band tail states, and suppress Auger processes in CsPbBr3 NPLs. Consequently, the LEDs demonstrate efficient and color-stable blue emissions at 465 nm with a narrow emission line width of 17 nm and a maximum external quantum efficiency (EQE) of 5.4%, representing the state-of-the-art CsPbBr3 NPL LEDs.

2.
J Am Chem Soc ; 146(20): 14260-14266, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38714344

RESUMEN

The electrochemical CO2 reduction reaction by copper-based catalysts features a promising approach to generate value-added multicarbon (C2+) products. However, due to the unfavored formation of oxygenate intermediates on the catalyst surface, the selectivity of C2+ alcohols like ethanol remains unsatisfactory compared to that of ethylene. The bifurcation point (i.e., the CH2═CHO* intermediate adsorbed on Cu via a Cu-O-C linkage) is critical to the C2+ product selectivity, whereas the subsequent cleavage of the Cu-O or the O-C bond determines the ethanol or ethylene pathway. Inspired by the hard-soft acid-base theory, in this work, we demonstrate an electron delocalization tuning strategy of the Cu catalyst by a nitrene surface functionalization approach, which allows weakening and cleaving of the Cu-O bond of the adsorbed CH2═CHO*, as well as accelerating hydrogenation of the C═C bond along the ethanol pathway. As a result, the nitrene-functionalized Cu catalyst exhibited a much-enhanced ethanol Faradaic efficiency of 45% with a peak partial current density of 406 mA·cm-2, substantially exceeding that of unmodified Cu or amide-functionalized Cu. When assembled in a membrane electrode assembly electrolyzer, the catalyst presented a stable CO2-to-ethanol conversion for >300 h at an industrial current density of 400 mA·cm-2.

3.
Inorg Chem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957131

RESUMEN

A high-nuclear Co-added polyoxometalate (CoAP) was synthesized via a hydrothermal reaction: H14.5K9Na7.5-{[Co8(µ2-OH)(µ3-OH)2(H2O)2(Co(H2O)GeW6O26)(B-α-GeW9O34)2][BO(OH)2][Co12(µ2-OH)(µ3-OH)5(H2O)3(Co(H2O)GeW6O26)(GeW6O26)(B-α-GeW9O34)]}·46H2O (1). The polyoxoanion of 1 contains a large Co20 cluster gathered by lacunary GeW6O26 and GeW9O34 subunits. 1 represents a one-dimensional (1D) chain formed by adjacent polyoxoanions coupling through a CoO6 double bridge, showing the first example of a high-nuclear CoAP-based inorganic chain. 1 served as an efficient electrocatalyst in oxygen evolution reactions (OERs).

4.
Environ Sci Technol ; 58(23): 10287-10297, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38805641

RESUMEN

Though long recognized as synthetic precursors to other poly- and perfluoroalkyl substances (PFASs), most poly- and perfluoroalkyl sulfonyl halides (PASXs) cannot be directly measured and have generally received minimal attention. Inspired by the redox reaction between sulfonyl halide groups and p-toluenethiol in organic chemistry, we developed a novel nontarget analysis strategy for PASXs by intergrating derivatization and specific fragment-based liquid chromatography-high resolution mass spectrometry screening for m/z 82.961 [SO2F-] and m/z 95.934 [S2O2-]. By using this strategy, we discovered 11 PASXs, namely, perfluoroalkyl sulfonyl fluorides (5), polyfluoroalkyl sulfonyl fluorides (2), unsaturated perfluoroalkyl sulfonyl fluoride (1), and perfluoroalkyl sulfonyl chlorides (3) in soil samples collected from an abandoned fluorochemical manufacturing park. These average ∑PASXs concentrations were 1120 µg kg-1 (range: 9.7-9860 µg kg-1), which were very likely to be the key intermediates and undesired byproducts of electrochemical fluorination processes. Spatial variation in the mass ratio of ∑PASXs to ∑PFSAs (range: 0.7-795%) also indicates their different transportation pathways. More importantly, the decline of PASXs and increase of perfluoroalkyl sulfonates (when compared to a prior study at this site) suggest the continued hydrolysis of PASXs and the relatively fast environmental transformation rates in the abandoned fluorochemical park soils. Overall, these findings demonstrated the utility of a novel nontarget analysis strategy, which may change most PASXs from inferred precursors to measured intermediates and further could be adapted for structures, distribution, and transformation studies of PFASXs in other matrices.


Asunto(s)
Espectrometría de Masas , Contaminantes del Suelo , Suelo , Cromatografía Liquida , Contaminantes del Suelo/química , Suelo/química , Fluorocarburos/química , Monitoreo del Ambiente/métodos
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 174-183, 2024 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273784

RESUMEN

The most frequent primary brain tumor in adults is glioma, yet no effective curative treatments are currently available. Our previous study demonstrated the enhancing effects of JARID2 on glioma sensitivity to TMZ treatment. In this study, miR-155 is predicted to target JARID2. miR-155 is overexpressed in clinical glioma specimens and cell lines. miR-155 overexpression in glioma cells enhances cell viability and represses cell apoptosis. Through targeting, miR-155 inhibits JARID2 expression. miR-155 inhibition inhibits glioma cell viability and enhances cell apoptosis, whereas JARID2 knockdown enhances cell viability and inhibits cell apoptosis; JARID2 knockdown partially reverses miR-155 inhibition effects on glioma phenotypes. miR-155 inhibition reduces but knockdown of JARID2 promotes the tumor formation ability of glioma cells in vivo. Valproic acid (VPA) upregulates JARID2 expression, inhibits glioma cell viability and enhances cell apoptosis. VPA downregulates the expression level of miR-155 by increasing the methylation level of the miR-155 promoter, suggesting that the miR-155/JARID2 axis is implicated in VPA inhibition of glioma cell viability and enhancement of glioma cell apoptosis. This study demonstrates a new mechanism of VPA treatment of gliomas by affecting the miR-155/JARID2 axis, which could be regarded as a new strategy for the prevention and treatment of glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , MicroARNs , Humanos , Ácido Valproico/farmacología , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , MicroARNs/metabolismo , Metilación , Proliferación Celular/genética , Apoptosis/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulación Neoplásica de la Expresión Génica
6.
Opt Express ; 31(13): 22040-22054, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37381287

RESUMEN

Fourier-transform spectral imaging captures frequency-resolved images with high spectral resolution, broad spectral range, high photon flux, and low stray light. In this technique, spectral information is resolved by taking Fourier transformation of the interference signals of two copies of the incident light at different time delays. The time delay should be scanned at a high sampling rate beyond the Nyquist limit to avoid aliasing, at the price of low measurement efficiency and stringent requirements on motion control for time delay scan. Here we propose, what we believe to be, a new perspective on Fourier-transform spectral imaging based on a generalized central slice theorem analogous to computerized tomography, using an angularly dispersive optics decouples measurements of the spectral envelope and the central frequency. Thus, as the central frequency is directly determined by the angular dispersion, the smooth spectral-spatial intensity envelope is reconstructed from interferograms measured at a sub-Nyquist time delay sampling rate. This perspective enables high-efficiency hyperspectral imaging and even spatiotemporal optical field characterization of femtosecond laser pulses without a loss of spectral and spatial resolutions.

7.
Opt Express ; 31(12): 19777-19793, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37381386

RESUMEN

Ultrafast electron microbunch trains have broad applications in which the individual bunch length and the bunch-to-bunch interval are critical parameters that need to be precisely diagnosed. However, directly measuring these parameters remains challenging. This paper presents an all-optical method that simultaneously measures the individual bunch length and the bunch-to-bunch spacing through an orthogonal THz-driven streak camera. For a 3 MeV electron bunch train, the simulation indicates that the temporal resolution of individual bunch length and the bunch-to-bunch spacing is 2.5 fs and 1 fs, respectively. Through this method, we expect to open a new chapter in the temporal diagnostic of electron bunch trains.

8.
Inorg Chem ; 62(46): 19006-19014, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37930938

RESUMEN

The application of X-ray imaging in military, industrial flaw detection, and medical examination is inseparable from the wide application of scintillator materials. In order to substitute for lead, lower costs, and reduce self-absorption, organic-inorganic hybrid lead-free perovskite scintillators are emerging as a new option. In this work, novel (TEA)2Zr1-xTexCl6 perovskite microcrystals (MCs) were successfully synthesized by a hydrothermal method, with Te4+ doping, which leads to yellow triplet-state self-trapped excitons emission. The emission peak of (TEA)2Zr1-xTexCl6 located at 605 nm under X-ray excitation, which was applied to X-ray imaging, shows a clear wiring structure inside the USB connector. The detection limit (DL) of 820 nGyair/s for (TEA)2Zr0.9Te0.1Cl6 is well below the dose rate corresponding to a standard medical X-ray diagnosis is 5.5 µGyair/s. This work opens up a new path for organic-inorganic hybrid lead-free scintillators.

9.
Environ Sci Technol ; 57(51): 21855-21865, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38086098

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) represent significant stress to organisms and are known to disrupt microbial community structure and function. Nevertheless, a detailed knowledge of the soil microbial community responding to PFAS stress at the metabolism level is required. Here we integrated UPLC-HRMS-based metabolomics data with 16S rRNA and ITS amplicon data across soil samples collected adjacent to a fluoropolymer production facility to directly identify the biochemical intermediates in microbial metabolic pathways and the interactions with microbial community structure under PFAS stress. A strong correlation between metabolite and microbial diversity was observed, which demonstrated significant variations in soil metabolite profiles and microbial community structures along with the sampling locations relative to the facility. Certain key metabolites were identified in the metabolite-PFAS co-occurrence network, functioning on microbial metabolisms including lipid metabolism, amino acid metabolism, and secondary metabolite biosynthesis. These results provide novel insights into the impacts of PFAS contamination on soil metabolomes and microbiomes. We suggest that soil metabolomics is an informative and useful tool that could be applied to reinforce the chemical evidence on the disruption of microbial ecological traits.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Microbiota , Suelo/química , ARN Ribosómico 16S/genética , Fluorocarburos/análisis , Polímeros de Fluorocarbono
10.
Environ Sci Technol ; 57(7): 2981-2991, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36749182

RESUMEN

The interactions between dissolved organic matter (DOM) and iron (Fe) oxyhydroxide are crucial in regulating the biogeochemical cycling of nutrients and elements, including the preservation of carbon in soils. The mechanisms of DOM molecular assembly on mineral surfaces have been extensively studied at the mesoscale with equilibrium experiments, yet the molecular-level evolution of the DOM-mineral interface under dynamic interaction conditions is not fully understood. Here, we designed a microfluidic reactor coupled with an online solid phase extraction (SPE)-LC-QTOF MS system to continually monitor the changes in DOM composition during flowing contact with Fe oxyhydroxide at circumneutral pH, which simulates soil minerals interacting with constant DOM input. Time-series UV-visible absorption spectra and mass spectrometry data showed that after aromatic DOM moieties were first preferentially sequestered by the pristine Fe oxyhydroxide surface, the adsorption of nonaromatic DOM molecules with greater hydrophobicity, lower acidity, and lower molecular weights (<400) from new DOM solutions was favored. This is accompanied by a transition from mineral surface chemistry-dominated adsorption to organic-organic interaction-dominated adsorption. These findings provide direct molecular-level evidence to the zonal model of DOM assembly on mineral surfaces by taking the dynamics of interfacial interactions into consideration. This study also shows that coupled microfluidics and online high-resolution mass spectrometry (HRMS) system is a promising experimental platform for probing microscale environmental carbon dynamics by integrating in situ reactions, sample pretreatment, and automatic analysis.


Asunto(s)
Materia Orgánica Disuelta , Microfluídica , Espectrometría de Masas , Minerales/química , Suelo/química , Carbono
11.
Angew Chem Int Ed Engl ; 62(43): e202309319, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37673793

RESUMEN

Electroreduction of CO2 to multi-carbon (C2+ ) products is a promising approach for utilization of renewable energy, in which the interfacial water quantity is critical for both the C2+ product selectivity and the stability of Cu-based electrocatalytic sites. Functionalization of long-chain alkyl molecules on a catalyst surface can help to increase its stability, while it also tends to block the transport of water, thus inhibiting the C2+ product formation. Herein, we demonstrate the fine tuning of interfacial water by surface assembly of toluene on Cu nanosheets, allowing for sustained and enriched CO2 supply but retarded water transfer to catalytic surface. Compared to bare Cu with fast cathodic corrosion and long-chain alkyl-modified Cu with main CO product, the toluene assembly on Cu nanosheet surface enabled a high Faradaic efficiency of 78 % for C2+ and a partial current density of 1.81 A cm-2 . The toluene-modified Cu catalyst further exhibited highly stable CO2 -to-C2 H4 conversion of 400 h in a membrane-electrode-assembly electrolyzer, suggesting the attractive feature for both efficient C2+ selectivity and excellent stability.

12.
Lancet ; 398(10297): 303-313, 2021 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-34111416

RESUMEN

BACKGROUND: Patients with locoregionally advanced nasopharyngeal carcinoma have a high risk of disease relapse, despite a high proportion of patients attaining complete clinical remission after receiving standard-of-care treatment (ie, definitive concurrent chemoradiotherapy with or without induction chemotherapy). Additional adjuvant therapies are needed to further reduce the risk of recurrence and death. However, the benefit of adjuvant chemotherapy for nasopharyngeal carcinoma remains controversial, highlighting the need for more effective adjuvant treatment options. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was done at 14 hospitals in China. Patients (aged 18-65 years) with histologically confirmed, high-risk locoregionally advanced nasopharyngeal carcinoma (stage III-IVA, excluding T3-4N0 and T3N1 disease), no locoregional disease or distant metastasis after definitive chemoradiotherapy, an Eastern Cooperative Oncology Group performance status of 0 or 1, sufficient haematological, renal, and hepatic function, and who had received their final radiotherapy dose 12-16 weeks before randomisation, were randomly assigned (1:1) to receive either oral metronomic capecitabine (650 mg/m2 body surface area twice daily for 1 year; metronomic capecitabine group) or observation (standard therapy group). Randomisation was done with a computer-generated sequence (block size of four), stratified by trial centre and receipt of induction chemotherapy (yes or no). The primary endpoint was failure-free survival, defined as the time from randomisation to disease recurrence (distant metastasis or locoregional recurrence) or death due to any cause, in the intention-to-treat population. Safety was assessed in all patients who received at least one dose of capecitabine or who had commenced observation. This trial is registered with ClinicalTrials.gov, NCT02958111. FINDINGS: Between Jan 25, 2017, and Oct 25, 2018, 675 patients were screened, of whom 406 were enrolled and randomly assigned to the metronomic capecitabine group (n=204) or to the standard therapy group (n=202). After a median follow-up of 38 months (IQR 33-42), there were 29 (14%) events of recurrence or death in the metronomic capecitabine group and 53 (26%) events of recurrence or death in the standard therapy group. Failure-free survival at 3 years was significantly higher in the metronomic capecitabine group (85·3% [95% CI 80·4-90·6]) than in the standard therapy group (75·7% [69·9-81·9]), with a stratified hazard ratio of 0·50 (95% CI 0·32-0·79; p=0·0023). Grade 3 adverse events were reported in 35 (17%) of 201 patients in the metronomic capecitabine group and in 11 (6%) of 200 patients in the standard therapy group; hand-foot syndrome was the most common adverse event related to capecitabine (18 [9%] patients had grade 3 hand-foot syndrome). One (<1%) patient in the metronomic capecitabine group had grade 4 neutropenia. No treatment-related deaths were reported in either group. INTERPRETATION: The addition of metronomic adjuvant capecitabine to chemoradiotherapy significantly improved failure-free survival in patients with high-risk locoregionally advanced nasopharyngeal carcinoma, with a manageable safety profile. These results support a potential role for metronomic chemotherapy as an adjuvant therapy in the treatment of nasopharyngeal carcinoma. FUNDING: The National Natural Science Foundation of China, the Key-Area Research and Development Program of Guangdong Province, the Natural Science Foundation of Guangdong Province, the Innovation Team Development Plan of the Ministry of Education, and the Overseas Expertise Introduction Project for Discipline Innovation. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Asunto(s)
Capecitabina/administración & dosificación , Quimioterapia Adyuvante/métodos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Administración Metronómica , Adulto , Anciano , Antimetabolitos Antineoplásicos/administración & dosificación , Terapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
13.
Cell Mol Neurobiol ; 42(4): 1065-1077, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33161527

RESUMEN

Glioma is the most common malignant brain tumor and long non-coding RNAs (lncRNAs) have been reported to play an important role in the growth and angiogenesis of glioma. However, the potential mechanisms of lncRNA H19 in glioma remain unclear. In the present study, the effects of lncRNA H19 on glioma cell proliferation, migration, and angiogenesis were evaluated. The expression levels of H19, miR-342, and Wnt5a in glioma tissues and cells were detected by RT-qPCR or Western blotting. Dual luciferase reporter assay confirmed the interaction between H19, miR-342, and Wnt5a. Cell proliferation, migration, and angiogenesis were analyzed by colony formation, transwell, and tube formation assays, respectively. IHC was performed to test the angiogenesis-related factor CD31. H19 and Wnt5a expression were remarkably upregulated in glioma tissues and cells, whereas miR-342 expression was downregulated. Moreover, functional analysis confirmed that knockdown of H19 or overexpression of miR-342 suppressed glioma cell proliferation, migration, and angiogenesis in vitro. Besides, H19 was found to directly target miR-342 to promote Wnt5a expression and activate ß-catenin pathway in glioma cells. Moreover, suppression of miR-342 or overexpression of Wnt5a reversed the inhibitory effect of sh-H19 on glioma growth and metastasis. Additionally, we verified that H19 promoted glioma cell proliferation, migration, and angiogenesis via miR-342/Wnt5a/ß-catenin axis in vivo. H19 regulates glioma cell growth and metastasis through miR-342 to mediate Wnt5a/ß-catenin signaling pathway, which provides new therapeutic targets for glioma treatment.


Asunto(s)
Glioma , MicroARNs , ARN Largo no Codificante , Proliferación Celular/genética , Glioma/genética , Glioma/patología , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteína Wnt-5a/genética , beta Catenina
14.
Drug Dev Ind Pharm ; 48(10): 575-584, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36305784

RESUMEN

The solubility of genistein was measured in the binary system of ethanol and water at temperatures ranging from 288.2 to 328.2 K. The obtained data were correlated with the modified Apelblat model, Yalkowsky model, λh model, CNIBS/R-K model, Jouyban-Acree-van't Hoff model, and modified Wilson model and their prediction accuracy was evaluated by calculating the mean relative deviation. The thermodynamic functions, Gibbs energy, enthalpy, and entropy of solution were determined using van't Hoff equation. Moreover, the preferential solvation was analyzed by using the solubility data at 298.2 K. The solubility of genistein in the system increased with an increase in temperature and mole fraction of ethanol in the solvent mixtures. The values for solubility of genistein are ranging from 0.47 obtained in neat water at T = 288.2 K to 5.02 obtained in absolute ethanol at T = 328.2 K. The values of ΔsolnG,0 ΔsolnH0 and ΔsolnH0 for the dissolution of genistein in mixtures are positive, whereas the values of ΔsolnH0 in neat water and absolute ethanol are negative. The thermodynamic properties of dissolution suggest that the dissolution process is non-spontaneous and endergonic. The modified Apelblat model can provide more accurate predictive solubility of genistein in the water and ethanol mixtures, whereas Yalkowsky model calculates solubility of genistein with large deviations. Genistein is preferentially solvated by water in water-rich mixtures (0 < x2 < 0.24) but preferential solvation by ethanol in the region of 0.24 < x2 < 1. Overall, this work could be applied for designing and optimizing the extraction, purification, and crystallization process of genistein.


Asunto(s)
Genisteína , Agua , Solubilidad , Agua/química , Temperatura , Etanol/química , Termodinámica , Solventes/química
15.
Small ; 17(25): e2101107, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34018683

RESUMEN

The poor stability, in particular with respect to temperature, moisture, and light exposure, remains a ubiquitous impediment virtually for metal halide perovskite materials and devices in their future practical application. Herein, from the perspective of precursor solution chemistry, ionic liquid solvent methylammonium acetate (MAAc) is introduced to prepare high-quality MAPbBr3 perovskite thin films in a one-step air-processing process without anti-solvent treatment. Due to formation of pinhole-free, uniform, and compact MAPbBr3 perovskite film, excellent amplified spontaneous emission (ASE) with high emission efficiency and low threshold is obtained under nanosecond laser. Furthermore, the prepared MAPbBr3 perovskite exhibits excellent two-photon induced ASE with a low threshold of 100 µJ cm-2 under 800 nm femtosecond laser excitation. More importantly, in comparison with the traditional MAPbBr3 films prepared with N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), the MAPbBr3 film prepared with MAAc shows excellent optical stability: no signs of degradation under more than 2 h pulsed laser excitation, stable ASE emission spectra under the humidity of 95% and ASE spectra can be stimulated when films are kept in air for more than 6000 h without encapsulation.

16.
Opt Express ; 28(24): 35498-35505, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379663

RESUMEN

Coherent beam combination (CBC) is a promising technology for achieving several hundred petawatts and even EW-level lasers. However, the measurement of the synchronization error and the time jitter of CBC is one of key technical issues, especially in the few-cycle PW-level laser facilities. In this paper, we demonstrate that the absolute time delay (ATD) and the relative time delay (RTD) for a tiled-aperture CBC can simultaneously be measured by using the double-humped spectral beam interferometry. The experimental study also was demonstrated. A root-mean-square deviation of approximately λ/38 (70 as) and a combining efficiency of 87.3% at 1 Hz closed feedback loop was obtained, respectively. Due to the wide adjustment range and a vast resisting beam energy disturbance capacity, this technique provide an effective and practical solution for measuring simultaneously the ATD and the RTD in the few-cycle PW-level laser pulses CBC.

17.
Small ; 15(23): e1901173, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31033191

RESUMEN

The poor stability and aggregation problem of CsPbBr3 quantum dots (QDs) in air are great challenges for their future practical application. Herein, a simple and effective ligand-modification strategy is proposed by introducing 2-hexyldecanoic acid (DA) with two short branched chains to replace oleic acid (OA) with long chains during the synthesis process. These two short branched chains not only maintain their colloidal stability but also contribute to efficient radiative recombination. The calculations show that CsPbBr3 QDs with DA modification (CsPbBr3 -DA QDs) have larger binding energy than CsPbBr3 QDs with OA (CsPbBr3 -OA QDs), resulting in significantly enhanced stability. Due to the strong binding energy between DA ligands and QDs, CsPbBr3 -DA QDs exhibit no aggregation phenomenon even after stored in air for more than 70 d, and CsPbBr3 -DA QDs films can maintain 94.3% of initial PL intensity after 28 d, while in CsPbBr3 -OA QDs films occurs a rapid degradation of PL intensity. Besides, the enhanced amplified spontaneous emission (ASE) performance of CsPbBr3 -DA QDs films has been demonstrated under both one- and two-photon laser excitation. The ASE threshold of CsPbBr3 -DA QDs films is reduced by more than 50% and their ASE photostability is also improved, in comparison to CsPbBr3 -OA QDs films.

18.
Small ; 15(19): e1900484, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30941902

RESUMEN

All-inorganic semiconductor perovskite quantum dots (QDs) with outstanding optoelectronic properties have already been extensively investigated and implemented in various applications. However, great challenges exist for the fabrication of nanodevices including toxicity, fast anion-exchange reactions, and unsatisfactory stability. Here, the ultrathin, core-shell structured SiO2 coated Mn2+ doped CsPbX3 (X = Br, Cl) QDs are prepared via one facile reverse microemulsion method at room temperature. By incorporation of a multibranched capping ligand of trioctylphosphine oxide, it is found that the breakage of the CsPbMnX3 core QDs contributed from the hydrolysis of silane could be effectively blocked. The thickness of silica shell can be well-controlled within 2 nm, which gives the CsPbMnX3 @SiO2 QDs a high quantum yield of 50.5% and improves thermostability and water resistance. Moreover, the mixture of CsPbBr3 QDs with green emission and CsPbMnX3 @SiO2 QDs with yellow emission presents no ion exchange effect and provides white light emission. As a result, a white light-emitting diode (LED) is successfully prepared by the combination of a blue on-chip LED device and the above perovskite mixture. The as-prepared white LED displays a high luminous efficiency of 68.4 lm W-1 and a high color-rendering index of Ra = 91, demonstrating their broad future applications in solid-state lighting fields.

19.
Opt Express ; 27(7): 9459-9466, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31045097

RESUMEN

Perovskites have emerged as a class of cutting-edge light-emitting materials; however, their poor stability, due to the high sensitivity to moisture in the ambient environment, severely hinders their further application. Here, to obtain stable perovskite-based laser with excellent optical performance, all-inorganic perovskite CsPbBr3 quantum dots (QDs) evenly distributed into sub-micro silica sphere (CsPbBr3-SiO2) have been used as laser gain medium. The single silica sphere embedded by plentiful CsPbBr3 QDs demonstrates frequency up-converted lasing with compounded mode of random and whispering-gallery-mode (WGM) at room temperature. Furthermore, by incorporating the CsPbBr3-SiO2 spheres into a microtubule, the frequency up-converted WGM lasing has been successfully achieved under two-photon excitation. Notably, the CsPbBr3-SiO2 microtubule resonator exhibits a low lasing threshold of 430 µJ/cm2, mostly due to the enhanced gain for CsPbBr3 QDs inside the silica sphere. Moreover, stable WGM lasing is observed under continuous optical pump for 140 min, benefited from the protection of silica shells, which isolate the QDs from the environmental conditions. The enhanced lasing performance provides an effective way for further exploration and application of perovskite-based micro/nano photonic devices.

20.
Opt Lett ; 44(19): 4706-4709, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568422

RESUMEN

We report successful room-temperature up-conversion random lasing by distributing CsPbBr3 quantum dots (QDs) uniformly into TiO2 nanotubes (NTs). In order to overcome the difficulty in purifying the QDs, TiO2 NTs were designed to collect QDs and enhance the optical multiple scattering effect. A threshold of 9.54 mJ/cm2 and narrow full width at half-maximum of 0.49 nm with a relatively high quality factor of 1089 were successfully observed. These results indicate that CsPbBr3QDs/TiO2 NTs can be high-performance up-conversion lasers for practical applications, especially when the phase matching required by conventional approaches cannot be fulfilled.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA