Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metabolomics ; 20(4): 87, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068202

RESUMEN

INTRODUCTION: Stable isotope tracers have been increasingly used in preclinical cancer model systems, including cell culture and mouse xenografts, to probe the altered metabolism of a variety of cancers, such as accelerated glycolysis and glutaminolysis and generation of oncometabolites. Comparatively little has been reported on the fidelity of the different preclinical model systems in recapitulating the aberrant metabolism of tumors. OBJECTIVES: We have been developing several different experimental model systems for systems biochemistry analyses of non-small cell lung cancer (NSCLC1) using patient-derived tissues to evaluate appropriate models for metabolic and phenotypic analyses. METHODS: To address the issue of fidelity, we have carried out a detailed Stable Isotope-Resolved Metabolomics study of freshly resected tissue slices, mouse patient derived xenografts (PDXs), and cells derived from a single patient using both 13C6-glucose and 13C5,15N2-glutamine tracers. RESULTS: Although we found similar glucose metabolism in the three models, glutamine utilization was markedly higher in the isolated cell culture and in cell culture-derived xenografts compared with the primary cancer tissue or direct tissue xenografts (PDX). CONCLUSIONS: This suggests that caution is needed in interpreting cancer biochemistry using patient-derived cancer cells in vitro or in xenografts, even at very early passage, and that direct analysis of patient derived tissue slices provides the optimal model for ex vivo metabolomics. Further research is needed to determine the generality of these observations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Glutamina , Neoplasias Pulmonares , Metabolómica , Glutamina/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Animales , Metabolómica/métodos , Ratones , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Isótopos de Carbono/metabolismo , Fenotipo , Glucosa/metabolismo , Isótopos de Nitrógeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA