Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(9): 1822-1842, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565947

RESUMEN

A key question in plant biology is how oriented cell divisions are integrated with patterning mechanisms to generate organs with adequate cell type allocation. In the root vasculature, a gradient of miRNA165/6 controls the abundance of HD-ZIP III transcription factors, which in turn control cell fate and spatially restrict vascular cell proliferation to specific cells. Here, we show that vascular development requires the presence of ARGONAUTE10, which is thought to sequester miRNA165/6 and protect HD-ZIP III transcripts from degradation. Our results suggest that the miR165/6-AGO10-HDZIP III module acts by buffering cytokinin responses and restricting xylem differentiation. Mutants of AGO10 show faster growth rates and strongly enhanced survival under severe drought conditions. However, this superior performance is offset by markedly increased variation and phenotypic plasticity in sub-optimal carbon supply conditions. Thus, AGO10 is required for the control of formative cell division and coordination of robust cell fate specification of the vasculature, while altering its expression provides a means to adjust phenotypic plasticity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Argonautas , División Celular , Regulación de la Expresión Génica de las Plantas , MicroARNs , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , División Celular/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular , Xilema/citología , Xilema/metabolismo , Xilema/crecimiento & desarrollo , Xilema/genética
2.
EMBO J ; 42(10): e111273, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37021425

RESUMEN

Plant organogenesis requires matching the available metabolic resources to developmental programs. In Arabidopsis, the root system is determined by primary root-derived lateral roots (LRs), and adventitious roots (ARs) formed from non-root organs. Lateral root formation entails the auxin-dependent activation of transcription factors ARF7, ARF19, and LBD16. Adventitious root formation relies on LBD16 activation by auxin and WOX11. The allocation of shoot-derived sugar to the roots influences branching, but how its availability is sensed for LRs formation remains unknown. We combine metabolic profiling with cell-specific interference to show that LRs switch to glycolysis and consume carbohydrates. The target-of-rapamycin (TOR) kinase is activated in the lateral root domain. Interfering with TOR kinase blocks LR initiation while promoting AR formation. The target-of-rapamycin inhibition marginally affects the auxin-induced transcriptional response of the pericycle but attenuates the translation of ARF19, ARF7, and LBD16. TOR inhibition induces WOX11 transcription in these cells, yet no root branching occurs as TOR controls LBD16 translation. TOR is a central gatekeeper for root branching that integrates local auxin-dependent pathways with systemic metabolic signals, modulating the translation of auxin-induced genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatidilinositol 3-Quinasas/genética
3.
Plant Cell ; 36(4): 812-828, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38231860

RESUMEN

Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss common challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this fast-developing field of research.


Asunto(s)
Perfilación de la Expresión Génica , Plantas , Reproducibilidad de los Resultados , Plantas/genética , Estrés Fisiológico/genética , Almacenamiento y Recuperación de la Información
4.
Plant Cell ; 35(9): 3413-3428, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37338062

RESUMEN

The kinases SNF1-RELATED KINASE 1 (SnRK1) and TARGET OF RAPAMYCIN (TOR) are central sensors of the energy status, linking this information via diverse regulatory mechanisms to plant development and stress responses. Despite the well-studied functions of SnRK1 and TOR under conditions of limited or ample energy availability, respectively, little is known about the extent to which the 2 sensor systems function and how they are integrated in the same molecular process or physiological context. Here, we demonstrate that both SnRK1 and TOR are required for proper skotomorphogenesis in etiolated Arabidopsis (Arabidopsis thaliana) seedlings, light-induced cotyledon opening, and regular development in light. Furthermore, we identify SnRK1 and TOR as signaling components acting upstream of light- and sugar-regulated alternative splicing events, expanding the known action spectra for these 2 key players in energy signaling. Our findings imply that concurring SnRK1 and TOR activities are required throughout various phases of plant development. Based on the current knowledge and our findings, we hypothesize that turning points in the activities of these sensor kinases, as expected to occur upon illumination of etiolated seedlings, instead of signaling thresholds reflecting the nutritional status may modulate developmental programs in response to altered energy availability.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Plantones/genética , Plantones/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sirolimus , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Serina-Treonina Quinasas/genética
5.
Nature ; 569(7758): 714-717, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31092919

RESUMEN

Complex multicellular organisms evolved on Earth in an oxygen-rich atmosphere1; their tissues, including stem-cell niches, require continuous oxygen provision for efficient energy metabolism2. Notably, the maintenance of the pluripotent state of animal stem cells requires hypoxic conditions, whereas higher oxygen tension promotes cell differentiation3. Here we demonstrate, using a combination of genetic reporters and in vivo oxygen measurements, that plant shoot meristems develop embedded in a low-oxygen niche, and that hypoxic conditions are required to regulate the production of new leaves. We show that hypoxia localized to the shoot meristem inhibits the proteolysis of an N-degron-pathway4,5 substrate known as LITTLE ZIPPER 2 (ZPR2)-which evolved to control the activity of the class-III homeodomain-leucine zipper transcription factors6-8-and thereby regulates the activity of shoot meristems. Our results reveal oxygen as a diffusible signal that is involved in the control of stem-cell activity in plants grown under aerobic conditions, which suggests that the spatially distinct distribution of oxygen affects plant development. In molecular terms, this signal is translated into transcriptional regulation by the N-degron pathway, thereby linking the control of metabolic activity to the regulation of development in plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Hipoxia de la Célula , Meristema/crecimiento & desarrollo , Oxígeno/metabolismo , Aerobiosis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meristema/genética , Meristema/metabolismo , Desarrollo de la Planta , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteolisis , Células Madre/citología , Dedos de Zinc
6.
BMC Biol ; 20(1): 274, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482454

RESUMEN

BACKGROUND: Root development and function have central roles in plant adaptation to the environment. The modification of root traits has additionally been a major driver of crop performance since the green revolution; however, the molecular underpinnings and the regulatory programmes defining root development and response to environmental stress remain largely unknown. Single-cell reconstruction of gene regulatory programmes provides an important tool to understand the cellular phenotypic variation in complex tissues and their response to endogenous and environmental stimuli. While single-cell transcriptomes of several plant organs have been elucidated, the underlying chromatin landscapes associated with cell type-specific gene expression remain largely unexplored. RESULTS: To comprehensively delineate chromatin accessibility during root development of an important crop, we applied single-cell ATAC-seq (scATAC-seq) to 46,758 cells from rice root tips under normal and heat stress conditions. Our data revealed cell type-specific accessibility variance across most of the major cell types and allowed us to identify sets of transcription factors which associate with accessible chromatin regions (ACRs). Using root hair differentiation as a model, we demonstrate that chromatin and gene expression dynamics during cell type differentiation correlate in pseudotime analyses. In addition to developmental trajectories, we describe chromatin responses to heat and identify cell type-specific accessibility changes to this key environmental stimulus. CONCLUSIONS: We report chromatin landscapes during rice root development at single-cell resolution. Our work provides a framework for the integrative analysis of regulatory dynamics in this important crop organ at single-cell resolution.


Asunto(s)
Meristema , Oryza , Cromatina/genética , Oryza/genética
7.
EMBO J ; 37(20)2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30061313

RESUMEN

Shoot regeneration can be achieved in vitro through a two-step process involving the acquisition of pluripotency on callus-induction media (CIM) and the formation of shoots on shoot-induction media. Although the induction of root-meristem genes in callus has been noted recently, the mechanisms underlying their induction and their roles in de novo shoot regeneration remain unanswered. Here, we show that the histone acetyltransferase HAG1/AtGCN5 is essential for de novo shoot regeneration. In developing callus, it catalyzes histone acetylation at several root-meristem gene loci including WOX5, WOX14, SCR, PLT1, and PLT2, providing an epigenetic platform for their transcriptional activation. In turn, we demonstrate that the transcription factors encoded by these loci act as key potency factors conferring regeneration potential to callus and establishing competence for de novo shoot regeneration. Thus, our study uncovers key epigenetic and potency factors regulating plant-cell pluripotency. These factors might be useful in reprogramming lineage-specified plant cells to pluripotency.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/enzimología , Epigénesis Genética/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Histona Acetiltransferasas/biosíntesis , Meristema/enzimología , Acetilación , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sitios Genéticos/fisiología , Histona Acetiltransferasas/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/genética , Células Vegetales/enzimología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
8.
PLoS Comput Biol ; 16(7): e1007523, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32687508

RESUMEN

Coordination of fate transition and cell division is crucial to maintain the plant architecture and to achieve efficient production of plant organs. In this paper, we analysed the stem cell dynamics at the shoot apical meristem (SAM) that is one of the plant stem cells locations. We designed a mathematical model to elucidate the impact of hormonal signaling on the fate transition rates between different zones corresponding to slowly dividing stem cells and fast dividing transit amplifying cells. The model is based on a simplified two-dimensional disc geometry of the SAM and accounts for a continuous displacement towards the periphery of cells produced in the central zone. Coupling growth and hormonal signaling results in a nonlinear system of reaction-diffusion equations on a growing domain with the growth rate depending on the model components. The model is tested by simulating perturbations in the level of key transcription factors that maintain SAM homeostasis. The model provides new insights on how the transcription factor HECATE is integrated in the regulatory network that governs stem cell differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Modelos Biológicos , Células Vegetales , Reguladores del Crecimiento de las Plantas/fisiología , Transducción de Señal/fisiología , Biología Computacional , Simulación por Computador , Meristema/citología , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/fisiología , Células Vegetales/metabolismo , Células Vegetales/fisiología
9.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830276

RESUMEN

Cell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as a renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. In Miscanthus leaves, MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. The ectopic expression of MsSCM1 and MsMYB103 in N. benthamiana leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin compositions. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed an extensive overlap with the response to the NAC master transcription factor MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Furthermore, conserved and previously described promoter elements as well as novel and specific motifs could be identified from the target genes of the three transcription factors. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards a tailored biomass.


Asunto(s)
Lignina/biosíntesis , Proteínas de Plantas/metabolismo , Poaceae/metabolismo , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Biomasa , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Poaceae/genética , Poaceae/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , RNA-Seq/métodos , Factores de Transcripción/genética , Transcriptoma/genética
10.
Nature ; 565(7740): 433-435, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30666055
11.
J Plant Res ; 133(3): 297-309, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32146616

RESUMEN

In multicellular organisms, not all cells are created equal. Instead, organismal complexity is achieved by specialisation and division of labour between distinct cell types. Therefore, the organism depends on the presence, correct proportion and function of all cell types. It follows that early development is geared towards setting up the basic body plan and to specify cell lineages. Since plants employ a post-embryonic mode of development, the continuous growth and addition of new organs require a source of new cells, as well as a strict regulation of cellular composition throughout the entire life-cycle. To meet these demands, evolution has brought about complex regulatory systems to maintain and control continuously active stem cell systems. Here, we review recent work on the mechanisms of non cell-autonomous control of shoot stem cells in the model plant Arabidopsis thaliana with a strong focus on the cell-to-cell mobility and function of the WUSCHEL homeodomain transcription factor.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Meristema/citología , Brotes de la Planta/citología , Células Madre/citología , Proteínas de Arabidopsis , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio
12.
Proc Natl Acad Sci U S A ; 114(36): E7632-E7640, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28827319

RESUMEN

Identifying the transcription factors (TFs) and associated networks involved in stem cell regulation is essential for understanding the initiation and growth of plant tissues and organs. Although many TFs have been shown to have a role in the Arabidopsis root stem cells, a comprehensive view of the transcriptional signature of the stem cells is lacking. In this work, we used spatial and temporal transcriptomic data to predict interactions among the genes involved in stem cell regulation. To accomplish this, we transcriptionally profiled several stem cell populations and developed a gene regulatory network inference algorithm that combines clustering with dynamic Bayesian network inference. We leveraged the topology of our networks to infer potential major regulators. Specifically, through mathematical modeling and experimental validation, we identified PERIANTHIA (PAN) as an important molecular regulator of quiescent center function. The results presented in this work show that our combination of molecular biology, computational biology, and mathematical modeling is an efficient approach to identify candidate factors that function in the stem cells.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes/genética , Raíces de Plantas/genética , Células Madre/metabolismo , Algoritmos , Teorema de Bayes , Análisis por Conglomerados , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Factores de Transcripción/genética , Transcriptoma/genética
13.
Plant J ; 95(1): 57-70, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29667268

RESUMEN

During the plant life cycle, diverse signaling inputs are continuously integrated and engage specific genetic programs depending on the cellular or developmental context. Consistent with an important role in this process, HECATE (HEC) basic helix-loop-helix transcription factors display diverse functions, from photomorphogenesis to the control of shoot meristem dynamics and gynoecium patterning. However, the molecular mechanisms underlying their functional versatility and the deployment of specific HEC subprograms remain elusive. To address this issue, we systematically identified proteins with the capacity to interact with HEC1, the best-characterized member of the family, and integrated this information with our data set of direct HEC1 target genes. The resulting core genetic modules were consistent with specific developmental functions of HEC1, including its described activities in light signaling, gynoecium development and auxin homeostasis. Importantly, we found that HEC genes also play a role in the modulation of flowering time, and uncovered that their role in gynoecium development may involve the direct transcriptional regulation of NGATHA1 (NGA1) and NGA2 genes. NGA factors were previously shown to contribute to fruit development, but our data now show that they also modulate stem cell homeostasis in the shoot apical meristem. Taken together, our results delineate a molecular network underlying the functional versatility of HEC transcription factors. Our analyses have not only allowed us to identify relevant target genes controlling shoot stem cell activity and a so far undescribed biological function of HEC1, but also provide a rich resource for the mechanistic elucidation of further context-dependent HEC activities.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant Physiol ; 178(1): 40-53, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30026289

RESUMEN

Understanding the context-specific role of gene function is a key objective of modern biology. To this end, we generated a resource for inducible cell type-specific transactivation in Arabidopsis (Arabidopsis thaliana) based on the well-established combination of the chimeric GR-LhG4 transcription factor and the synthetic pOp promoter. Harnessing the flexibility of the GreenGate cloning system, we produced a comprehensive set of transgenic lines termed GR-LhG4 driver lines targeting most tissues in the Arabidopsis shoot and root with a strong focus on the indeterminate meristems. When we combined these transgenic lines with effectors under the control of the pOp promoter, we observed tight temporal and spatial control of gene expression. In particular, inducible expression in F1 plants obtained from crosses of driver and effector lines allows for rapid assessment of the cell type-specific impact of an effector with high temporal resolution. Thus, our comprehensive and flexible method is suitable for overcoming the limitations of ubiquitous genetic approaches, the outputs of which often are difficult to interpret due to the widespread existence of compensatory mechanisms and the integration of diverging effects in different cell types.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Clonación Molecular/métodos , Meristema/citología , Meristema/genética , Meristema/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Activación Transcripcional
15.
Development ; 142(13): 2237-49, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26130755

RESUMEN

Plants are sessile organisms, some of which can live for over a thousand years. Unlike most animals, plants employ a post-embryonic mode of development driven by the continuous activity of pluripotent stem cells. Consequently, plants are able to initiate new organs over extended periods of time, and many species can readily replace lost body structures by de novo organogenesis. Classical studies have also shown that plant tissues have a remarkable capacity to undergo de-differentiation and proliferation in vitro, highlighting the fact that plant cell fate is highly plastic. This suggests that the mechanisms regulating fate transitions must be continuously active in most plant cells and that the control of cellular pluripotency lies at the core of diverse developmental programs. Here, we review how pluripotency is established in plant stem cell systems, how it is maintained during development and growth and re-initiated during regeneration, and how these mechanisms eventually contribute to the amazing developmental plasticity of plants.


Asunto(s)
Desarrollo de la Planta , Células Madre Pluripotentes/metabolismo , Cromatina/metabolismo , Meristema/citología , Meristema/efectos de los fármacos , Mitosis/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos
16.
Development ; 142(19): 3343-50, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26293302

RESUMEN

The fruit, which develops from the fertilised gynoecium formed in the innermost whorl of the flower, is the reproductive organ and one of the most complex structures of an angiosperm plant. Phytohormones play important roles during flower and fruit patterning, morphogenesis and growth, and there is emerging evidence for a cross-talk between different classes of plant hormones throughout these processes. Here, we show that the bHLH transcription factors HECATE 1 (HEC1), HEC2 and HEC3, which have previously been identified as essential components of transmitting tract formation, affect both auxin and cytokinin responses during reproductive tissue development. We find that HEC1 interacts with SPATULA (SPT) to control carpel fusion and that both transcription factors restrict sensitivity to cytokinin in the gynoecium. In addition, HEC1 is tightly integrated into the auxin-signalling network at the levels of biosynthesis, transport and transcriptional response. Based on this data, we propose that HEC1 acts as a local modulator of auxin and cytokinin responses to control gynoecium development in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Morfogénesis/fisiología , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Comunicación Celular/fisiología , Inmunoprecipitación de Cromatina , Clonación Molecular , Cartilla de ADN/genética , Flores/metabolismo , Frutas/metabolismo , Microscopía Confocal , Datos de Secuencia Molecular , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Estadísticas no Paramétricas , Transgenes/genética
17.
Plant Cell ; 27(12): 3383-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26589552

RESUMEN

The presence of a large central vacuole is one of the hallmarks of a prototypical plant cell, and the multiple functions of this compartment require massive fluxes of molecules across its limiting membrane, the tonoplast. Transport is assumed to be energized by the membrane potential and the proton gradient established by the combined activity of two proton pumps, the vacuolar H(+)-pyrophosphatase (V-PPase) and the vacuolar H(+)-ATPase (V-ATPase). Exactly how labor is divided between these two enzymes has remained elusive. Here, we provide evidence using gain- and loss-of-function approaches that lack of the V-ATPase cannot be compensated for by increased V-PPase activity. Moreover, we show that increased V-ATPase activity during cold acclimation requires the presence of the V-PPase. Most importantly, we demonstrate that a mutant lacking both of these proton pumps is conditionally viable and retains significant vacuolar acidification, pointing to a so far undetected contribution of the trans-Golgi network/early endosome-localized V-ATPase to vacuolar pH.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Genoma de Planta/genética , Pirofosfatasa Inorgánica/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Vacuolas/enzimología , Aclimatación , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , Frío , Endosomas/enzimología , Flores/citología , Flores/enzimología , Flores/genética , Flores/fisiología , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica/antagonistas & inhibidores , Pirofosfatasa Inorgánica/genética , Meristema/citología , Meristema/enzimología , Meristema/genética , Meristema/fisiología , Mutagénesis Insercional , Fenotipo , Raíces de Plantas/citología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Plantones/citología , Plantones/enzimología , Plantones/genética , Plantones/fisiología , Análisis de Secuencia de ADN , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética , Red trans-Golgi/enzimología
18.
PLoS Genet ; 11(7): e1005337, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26134422

RESUMEN

The ability of plants to provide a plastic response to environmental cues relies on the connectivity between signaling pathways. DELLA proteins act as hubs that relay environmental information to the multiple transcriptional circuits that control growth and development through physical interaction with transcription factors from different families. We have analyzed the presence of one DELLA protein at the Arabidopsis genome by chromatin immunoprecipitation coupled to large-scale sequencing and we find that it binds at the promoters of multiple genes. Enrichment analysis shows a strong preference for cis elements recognized by specific transcription factor families. In particular, we demonstrate that DELLA proteins are recruited by type-B ARABIDOPSIS RESPONSE REGULATORS (ARR) to the promoters of cytokinin-regulated genes, where they act as transcriptional co-activators. The biological relevance of this mechanism is underpinned by the necessity of simultaneous presence of DELLAs and ARRs to restrict root meristem growth and to promote photomorphogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Citocininas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión/genética , Inmunoprecipitación de Cromatina , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/fisiología , Raíces de Plantas/crecimiento & desarrollo , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal
19.
Proc Natl Acad Sci U S A ; 111(40): 14619-24, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25246576

RESUMEN

Cell-cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell-cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell-cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Homeodominio/genética , Meristema/metabolismo , Células Madre/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Comunicación Celular/genética , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Meristema/citología , Microscopía Confocal , Tallos de la Planta/citología , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Plasmodesmos/metabolismo , Multimerización de Proteína , Transporte de Proteínas/genética , Transducción de Señal/genética
20.
Nature ; 465(7301): 1089-92, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20577215

RESUMEN

The classic phytohormones cytokinin and auxin play essential roles in the maintenance of stem-cell systems embedded in shoot and root meristems, and exhibit complex functional interactions. Here we show that the activity of both hormones directly converges on the promoters of two A-type ARABIDOPSIS RESPONSE REGULATOR (ARR) genes, ARR7 and ARR15, which are negative regulators of cytokinin signalling and have important meristematic functions. Whereas ARR7 and ARR15 expression in the shoot apical meristem (SAM) is induced by cytokinin, auxin has a negative effect, which is, at least in part, mediated by the AUXIN RESPONSE FACTOR5/MONOPTEROS (MP) transcription factor. Our results provide a mechanistic framework for hormonal control of the apical stem-cell niche and demonstrate how root and shoot stem-cell systems differ in their response to phytohormones.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/citología , Nicho de Células Madre/citología , Nicho de Células Madre/metabolismo , Células Madre/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Citocininas/farmacología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Meristema/citología , Meristema/efectos de los fármacos , Meristema/genética , Meristema/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Transducción de Señal/efectos de los fármacos , Nicho de Células Madre/efectos de los fármacos , Células Madre/efectos de los fármacos , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA