Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 55(17): 11756-11766, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34397216

RESUMEN

Since its first identification in the United Kingdom in late 2020, the highly transmissible B.1.1.7 variant of SARS-CoV-2 has become dominant in several countries raising great concern. We developed a duplex real-time RT-qPCR assay to detect, discriminate, and quantitate SARS-CoV-2 variants containing one of its mutation signatures, the ΔHV69/70 deletion, and used it to trace the community circulation of the B.1.1.7 variant in Spain through the Spanish National SARS-CoV-2 Wastewater Surveillance System (VATar COVID-19). The B.1.1.7 variant was detected earlier than clinical epidemiological reporting by the local authorities, first in the southern city of Málaga (Andalucía) in week 20_52 (year_week), and multiple introductions during Christmas holidays were inferred in different parts of the country. Wastewater-based B.1.1.7 tracking showed a good correlation with clinical data and provided information at the local level. Data from wastewater treatment plants, which reached B.1.1.7 prevalences higher than 90% for ≥2 consecutive weeks showed that 8.1 ± 2.0 weeks were required for B.1.1.7 to become dominant. The study highlights the applicability of RT-qPCR-based strategies to track specific mutations of variants of concern as soon as they are identified by clinical sequencing and their integration into existing wastewater surveillance programs, as a cost-effective approach to complement clinical testing during the COVID-19 pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Aguas Residuales
2.
Sci Total Environ ; 786: 147534, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-33984699

RESUMEN

The presence of SARS-CoV-2 in wastewater pose the question of whether this new pandemic virus could be released into watercourses and potentially continue to finally reach coastal waters. In this study, we employed two bivalve molluscan species from the genus Ruditapes as sentinel organisms to investigate the presence of SARS-CoV-2 signals in the marine coastal environment. Estuarine sediments from the natural clam banks were also analyzed. Viral RNA was detected by RT-qPCR, targeting IP4, E and N1 genomic regions. Positive samples were also subjected to a PMAxx-triton viability RT-qPCR assay in order to discriminate between intact and altered capsids, obtaining indirect information about the viability of the virus. SARS-CoV-2 RNA traces were detected in 9/12 clam samples by RT-qPCR, from which 4 were positive for two different target regions. Viral quantification ranged from

Asunto(s)
Bivalvos , COVID-19 , Animales , Sedimentos Geológicos , Humanos , ARN Viral , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA