Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848498

RESUMEN

Here we report on the strong magneto-chiral dichroism (MChD) detected through visible and near-infrared light absorption up to 5.0 T on {Er5Ni6} metal clusters obtained by reaction of enantiopure chiral ligands and NiII and ErIII precursors. Single-crystal diffraction analysis reveals that these compounds are 3d-4f heterometallic clusters, showing helical chirality. MChD spectroscopy reveals a high gMChD dissymmetry factor of ca. 0.24 T-1 (T = 4.0 K, B = 1.0 T) for the 4I13/2 ← 4I15/2 magnetic-dipole allowed electronic transition of the ErIII centers. This record value is 1 or 2 orders of magnitude higher than that of the d-d electronic transitions of the NiII ions and the others f-f electric-dipole induced transitions of the ErIII centers. These findings clearly show the key role that magnetic-dipole allowed transitions have in the rational design of chiral lanthanide systems showing strong MChD.

2.
Small ; : e2401044, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516941

RESUMEN

Atomically precise metal clusters serve as a unique model for unraveling the intricate mechanism of the catalytic reaction and exploring the complex relationship between structure and activity. Herein, three series of water-soluble heterometallic clusters LnCu6, abbreviated as LnCu6-AC (Ln = La, Nd, Gd, Er, Yb; HAC = acetic acid), LnCu6-IM (Ln = La and Nd; IM = Imidazole), and LnCu6-IDA (Ln = Nd; H2IDA = Iminodiacetic acid) are presented, each featuring a uniform metallic core stabilized by distinct protected ligands. Crystal structure analysis reveals a triangular prism topology formed by six Cu2+ ions around one Ln3+ ion in LnCu6, with variations in Cu···Cu distances attributed to different ligands. Electrocatalytic oxygen evolution reaction (OER) shows that these different LnCu6 clusters exhibit different OER activities with remarkable turnover frequency of 135 s-1 for NdCu6-AC, 79 s-1 for NdCu6-IM and 32 s-1 for NdCu6-IDA. Structural analysis and Density Functional Theory (DFT) calculations underscore the correlation between shorter Cu···Cu distances and improves OER catalytic activity, emphasizing the pivotal role of active-site distance in regulating electrocatalytic OER activities. These results provide valuable insights into the OER mechanism and contribute to the design of efficient homogeneous OER electrocatalysts.

3.
Inorg Chem ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935512

RESUMEN

Keggin-Fe13 clusters are considered foundational building blocks or prenucleation precursors of ferrihydrite. Understanding the factors that influence the rotational configuration of these clusters, and their transformations in water, is vital for comprehending the formation mechanism of ferrihydrite. Here, we report syntheses and crystal structures of four lanthanide-iron-oxo clusters, namely, [Dy6Fe13(Gly)12(µ2-OH)6(µ3-OH)18(µ4-O)4(H2O)17]·13ClO4·19H2O (1), [Dy6Fe13(Gly)12(µ3-OH)24(µ4-O)4(H2O)18]·13ClO4·14H2O (2), [Pr8Fe34(Gly)24(µ3-OH)28(µ3-O)30(µ4-O)4(H2O)30]·6ClO4·20H2O (3), and [Pr6Fe13(Gly)12(µ3-OH)24(µ4-O)4(H2O)18]·13ClO4·22H2O (4, Gly = glycine). Single-crystal analyses reveal that 1 has a ß-Keggin-Fe13 cluster, marking the first documented instance of such a cluster to date. Conversely, both 2 and 4 contain an α-Keggin-Fe13 cluster, while 3 is characterized by four hexavacant ε-Keggin-Fe13 clusters. Magnetic property investigations of 1 and 2 show that 2 exhibits ferromagnetic interactions, while 1 exhibits antiferromagnetic interactions. An exploration of the synthetic conditions for 1 and 2 indicates that a higher pH promotes the formation of α-Keggin-Fe13 clusters, while a lower pH favors ß-Keggin-Fe13 clusters. A detailed analysis of the transition from 3 to 4 emphasizes that lacunary Keggin-Fe13 clusters can morph into Keggin-Fe13 clusters with a decrease in pH, accompanied by a significant change in their rotational configuration.

4.
Inorg Chem ; 63(18): 8003-8007, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38647013

RESUMEN

A series of chiral heterometallic Ln-Co clusters, denoted as Co2Ln and Co3Ln2 (Ln = Dy and Er), were synthesized by reacting the chiral chelating ligand (R/S)-2-(1-hydroxyethyl)pyridine (Hmpm), CoAc2·4H2O, and Ln(NO3)3·6H2O. Co2Ln and Co3Ln2 exhibit perfect mirror images in circular dichroism within the 320-700 nm range. Notably, the Co2Er and Co3Er2 clusters display pronounced magnetic circular dichroism (MCD) responses of the hypersensitive f-f transitions 4I15/2-4G11/2 at 375 nm and 4I15/2-2H11/2 at 520 nm of ErIII ions. This study highlights the strong magneto-optical activity associated with hypersensitive f-f transitions in chiral 3d-4f magnetic clusters.

5.
Angew Chem Int Ed Engl ; : e202410414, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924578

RESUMEN

A series of TADF-active compounds: 0D chiral Ln-Ag(I) clusters L-/D-Ln2Ag28-0D (Ln = Eu/Gd) and 2D chiral Ln-Ag(I) cluster-based frameworks L-/D-Ln2Ag28-2D (Ln = Gd) has been synthesized. Atomic-level structural analysis showed that the chiral Ag(I) cluster units {Ag14S12} in L-/D-Ln2Ag28-0D and L-/D-Ln2Ag28-2D exhibited similar configurations, linked by varying numbers of [Ln(H2O)x]3+ (x = 6 for 0D, x = 3 for 2D) to form the final target compounds. Temperature-dependent emission spectra and decay lifetimes measurement demonstrated the presence of TADF in L-Ln2Ag28-0D (Ln = Eu/Gd) and L-Gd2Ag28-2D. Experimentally, the remarkable TADF properties primarily originated from {Ag14S12} moieties in these compounds. Notably, {Ag14S12} in L-Eu2Ag28-0D and L-Gd2Ag28-2D displayed higher promote fluorescence rate and shorter TADF decay times than L-Gd2Ag28-0D. Combined with theoretical calculations, it was determined that the TADF behaviors of {Ag14S12} cluster units were induced by 4f perturbation of Ln3+ ions. Specially, while maintaining ΔE(S1-T1) small enough, it can significantly increase k(S1→S0) and reduce TADF decay time by adjusting the type or number of Ln3+ ions, thus achieving the purpose of improving TADF for cluster-based luminescent materials.

6.
J Am Chem Soc ; 145(40): 22176-22183, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37779382

RESUMEN

Single crystals with chiral shapes aroused the interest of chemists due to their fascinating polarization rotation properties. Although the formation of large-scale spiral structures is considered to be a potential factor in chiral crystals, the precise mechanism behind their formation remains elusive. Herein, we present a rare phenomenon involving the multitransfer and expression of chirality at micro-, meso-, and macroscopic levels, starting from chiral carbon atoms and extending to the double-helical secondary structure, ultimately resulting in the chiral geometry of crystals. The assembly of the chiral double helices is facilitated by the dual characteristics of amide groups derived from amino acids, which serve as both hydrogen bond donors and receptors, similar to the assembly pattern observed in DNA. Crystal face analysis and theoretical morphology reveal two critical factors for the mechanism of the chiral crystal: inherent intrinsically symmetrical distribution of crystal faces and their acquired growth. Importantly, the magnetic circular dichroism (MCD) study reveals the strong magneto-optical response of the hypersensitive f-f transition in the UV-vis-NIR region, which is much stronger than previously observed signals. Remarkably, an external magnetic field can reverse the CD signal. This research highlights the potential of lanthanide-based chiral helical structures as promising magneto-optical materials.

7.
J Am Chem Soc ; 145(31): 16983-16987, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37505903

RESUMEN

Electrically conductive metal-organic frameworks (MOFs) have been extensively studied for their potential uses in energy-related technologies and sensors. However, achieving that goal requires MOFs to be highly stable and maintain their conductivity under practical operating conditions with varying solution environments and temperatures. Herein, we have designed and synthesized a new series of {[Ln4(µ4-O)(µ3-OH)3(INA)3(GA)3](CF3SO3)(H2O)6}n (denoted as Ln4-MOFs, Ln = Gd, Tm, and Lu, INA = isonicotinic acid, GA = glycolic acid) single crystals, where electrons are found to transport along the π-π stacked aromatic carbon rings in the crystals. The Ln4-MOFs show remarkable stability, with minimal changes in conductivity under varying solution pH (1-12), temperature (373 K), and electric field as high as 800 000 V/m. This stability is achieved through the formation of strong coordination bonds between high-valent Ln(III) ions and rigid carboxylic linkers as well as hydrogen bonds that enhance the robustness of the electron transport path. The demonstrated lanthanide MOFs pave the way for the design of stable and conductive MOFs.

8.
J Am Chem Soc ; 145(42): 23188-23195, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37820275

RESUMEN

Inorganic molecular cages are emerging multifunctional molecular-based platforms with the unique merits of rigid skeletons and inherited properties from constituent metal ions. However, the sensitive coordination bonds and vast synthetic space have limited their systematic exploration. Herein, two giant cage-like clusters featuring the organic ligand-directed inorganic skeletons of Ni4[La74Ni104(IDA)96(OH)184(C2O4)12(H2O)76]·(NO3)38·(H2O)120 (La74Ni104, 5 × 5 × 3 - C2O4) and [La84Ni132(IDA)108(OH)168(C2O4)24(NO3)12(H2O)116]·(NO3)72·(H2O)296 (La84Ni132, 5 × 5 × 5 - C2O4) were discovered by a high-throughput synthetic search. With the assistance of machine learning analysis of the experimental data, phase diagrams of the two clusters in a four-parameter synthetic space were depicted. The effect of alkali, oxalate, and other parameters on the formation of clusters and the mechanism regulating the size of two n × m × l clusters were elucidated. This work uses high-throughput synthesis and machine learning methods to improve the efficiency of 3d-4f cluster discovery and finds the highest-nuclearity 3d-4f cluster to date by regulating the size of the n × m × l inorganic cages through oxalate ions, which pushes the synthetic methodology study on elusive inorganic giant cages in a significantly systematic way.

9.
Inorg Chem ; 62(5): 1781-1785, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35608919

RESUMEN

Two Keggin Fe13-oxo clusters, [Pr12Fe33(NO3)6(L-van)4(D-van)5(TEOA)12(µ3-OH)12(µ4-OH)12(µ4-O)28(H2O)4]·(ClO4)3·(NO3)·10H2O (1) and [Dy12Fe33(NO3)2(L-van)3(D-van)3(TEOA)12(µ3-OH)18(µ4-OH)6(µ4-O)28(H2O)9]·(ClO4)5·(NO3)6·15H2O (2), where L-van = l-valine, D-van = d-valine, and TEOA = triethanolamine, were prepared by using Ln3+ as a stabilizer. Cluster 1 crystallizes in a chiral space group of C2, while cluster 2 crystallizes in a centrosymmetric space group of Pnma. Dynamic magnetic measurements of 2 under a zero direct-current field reveal that 2 exhibits single-molecule-magnet characteristics with an energy barrier of 18.79 K. Significantly, the formation of the chiral cluster 1 is closely related to the larger radius of the Pr3+ ion.

10.
Inorg Chem ; 62(44): 18009-18013, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37870376

RESUMEN

Ratiometric luminescent thermometers with excellent performance often require the luminescent materials to possess high thermal stability and relative sensitivity (Sr). However, such luminescent materials are very rare, especially in physiological (298-323 K) and high-temperature (>373 K) regions. Here we report the synthesis and luminescent property of [Tb0.995Eu0.005(pfbz)2(phen)Cl] (3), which not only exhibits high Sr in physiological temperature but also has a Sr up to 7.47% K-1 at 440 K, the largest Sr at 440 K in known lanthanide-based coordination compound luminescent materials.

11.
Inorg Chem ; 62(42): 17041-17045, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37819767

RESUMEN

The selective fluorination of C-H bonds at room temperature using heterogeneous visible-light catalysts is both interesting and challenging. Herein, we present the heterogeneous sandwich-type structure uranyl-polyoxotungstate cluster Na17{Na@[(SbW9O33)2(UO2)6(PO3OH)6]}·46H2O (denoted as U6P6) to regulate the selective fluorination of the C-H bond under visible light and room temperature. This is the first report in which uranyl participates in the fluorination reaction in the form of an insoluble substance. U6P6 is capable of the effective selective fluorination of cycloalkanes and the recyclability of the photocatalyst due to the synergistic effect of multiple uranyl (UO2)2+ and the insolubility of organic reagents of polyoxotungstate. In situ electron paramagnetic resonance spectroscopy captured the generation of cycloalkane radicals during the photoreaction, confirming the mechanism of direct hydrogen atom transfer.

12.
J Am Chem Soc ; 144(12): 5653-5660, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35315276

RESUMEN

The understanding of the hydrolysis mechanism of lanthanide ions is limited by their elusive coordination configuration and undeveloped technology. A potential solution by high-resolution mass spectroscopy studies is hindered by the lack of a stable model under electrospray ionization (ESI) conditions and the complexity of the spectra. Herein, it is demonstrated that diketonate ligands can efficiently stabilize the hydrolyzed intermediate cluster of Ln3+ under ESI conditions, and an effective mass difference fingerprint of isomorphism (MDFI) method is proposed, which can allow the determination of the nuclearity-number of the species without depth resolution. Thus, the hydrolysis of Ln3+ into an atomically precise hydroxide cluster is observed at the level of precise formulae. The species evolution upon hydrolysis is along the dominant path of {Eu3}-{Eu4}-{Eu9}-{Eu10}-{Eu11}-{Eu15}-{Eu16} and a nondominant path of {Eu3}-{Eu4}-{Eu8-1}-{Eu8-2} under the investigated conditions. The crystal of the {Eu16} species was obtained via low-temperature crystallization, and single-crystal X-ray diffraction studies show that its structure contains three octahedral {o-Ln6} units. The contradiction between multiple {o-Ln6} units in the structure and the absence in the formation process indicates that the repetitive subunit observed in the structure does not necessarily correspond to the construction units of high-nuclearity clusters. Photophysical measurements indicate that Eu16 cluster has a high total emission quantum efficacy of 12.8% in the solid state. This study provides fundamental insights into the formation, evolution, and assembly of small lanthanide hydroxide units upon hydrolysis, which is vital for the goal of directional synthesis of lanthanide hydroxide clusters.


Asunto(s)
Elementos de la Serie de los Lantanoides , Cristalografía por Rayos X , Hidrólisis , Hidróxidos , Elementos de la Serie de los Lantanoides/química , Ligandos
13.
J Am Chem Soc ; 144(19): 8837-8847, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35503109

RESUMEN

Here, we report the molecular self-assembly of hydroxido-bridged {Ln5Ni6} ((Ln3+ = Dy3+, Y3+) metal clusters by the reaction of enantiopure chiral ligands, namely, (R/S)-(2-hydroxy-3-methoxybenzyl)-serine), with NiII and LnIII precursors. Single-crystal diffraction analysis reveals that these compounds are isostructural sandwich-like 3d-4f heterometallic clusters showing helical chirality. Direct current magnetic measurements on {Dy5Ni6} indicates ferromagnetic coupling between DyIII and NiII centers, whereas those on {Y5Ni6} denote that the NiII centers are antiferromagnetically coupled and/or magnetically anisotropic. Magneto-chiral dichroism (MChD) measurements on {Dy5Ni6} and its comparison to that of {Y5Ni6} provide the first experimental observation of intense multimetal site MChD signals in the visible-near-infrared region. Moreover, the comparison of MChD with natural and magnetic circular dichroism spectra unambiguously demonstrate for the first time that the MChD signals associated with the NiII d-d transitions are mostly driven by natural optical activity and those associated with the DyIII f-f transitions are driven by magnetic optical activity.


Asunto(s)
Elementos de la Serie de los Lantanoides , Compuestos Organometálicos , Cristalografía por Rayos X , Elementos de la Serie de los Lantanoides/química , Fenómenos Magnéticos , Magnetismo , Compuestos Organometálicos/química
14.
Inorg Chem ; 61(50): 20365-20372, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36475689

RESUMEN

Lanthanide-iron clusters usually display interesting structures and outstanding magnetic properties. However, due to the high reactivity (acidity) of the Fe3+-H2O bond and the inability to form a terminal oxo ligand, the preparation of high-nuclearity Ln-Fe clusters is a great challenge. Herein, a series of lanthanide-iron-oxo clusters with the formulas [Y6Fe(HL)10(NO3)2(EG)2(µ3-OH)8(H2O)4]·ClO4·N-H2BDEA·2H2O (Y6Fe, 1, H2L = 3-hydroxypivalic acid, EG = ethylene glycol, N-H2BDEA = 2,2'-(butylimino)diethanol), [Ln8Fe3(H2TEOA)2(HTEOA)2(HL)10(µ3-OH)9(µ2-OH)(µ4-O)2(H2O)4]·(NO3)3·xH2O (Ln = Y, x = 13 for 2, Y8Fe3; Ln = Dy, x = 10 for 3, Dy8Fe3; H3TEOA = triethanolamine), and [Ln12Fe14(HL)16(µ3-OH)20(µ2-OH)12(µ4-O)12(H2O)12]·(NO3)6·xH2O (Ln = Y, x = 40 for 4, Y12Fe14; Ln = Dy, x = 30 for 5, Dy12Fe14) were obtained by adjusting the pH with different aminopolyols as organic alkalis. Structural analysis showed that a cubane-like unit was the main structural unit in compounds 1-5. Compound 1 was formed by two {Y3Fe(µ3-OH)4} units with the common vertices, and compounds 2 and 3 were formed by two {Y3Fe(µ3-OH)3(µ4-O)} units with the common vertices bridging a quadrilateral unit {Ln2Fe2(µ3-OH)3(µ2-OH)}. The basic structural units of cubane-like {Ln2Fe2(µ3-OH)(µ4-O)3}, triangular {LnFe2(µ3-OH)2(µ4-O)}, and neutral iron-hydroxyl {Fe(µ3-OH)(µ2-OH)2} were found in compounds 4 and 5. The universality of building blocks for the assembly has been demonstrated in high-nuclearity lanthanide-iron-oxo clusters. Meanwhile, the structural regulation of the lanthanide-iron-oxo clusters 1-5 was realized by adjusting the pH with different organic alkalis, which provided the reference for the effective synthesis of high-nuclearity lanthanide-iron-oxo clusters. Magnetic studies showed that 3 and 5 displayed a slow magnetic relaxation behavior.

15.
Inorg Chem ; 61(26): 9849-9854, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35731144

RESUMEN

A series of acetylacetone-protected lanthanide-titanium-oxo clusters (LTOCs), formulated as [La6Ti(µ3-OH)8(acac)12(CH3O)2(CH3OH)6] (La6Ti; Hacac = acetylacetone) and [Ln9Ti2(µ4-O)(µ3-OH)14(acac)17(CH3O)2(CH3OH)3] [Ln = Eu (Eu9Ti2) and Tb (Tb9Ti2)], were synthesized through the reactions of LnCl3·6H2O (Ln = La, Eu, and Tb), Hacac, Ti(OiPr)4, and triethylamine in methanol. Crystal structural analysis shows that La6Ti exhibits an hourglass-like structure consisting of two La3Ti cubane subunits by sharing one Ti4+ ion, while Eu9Ti2 can be viewed as a combination of four Eu3Ti cubane subunits by sharing three corners and one side. The photoluminescence (PL) measurements show that Tb9Ti2 exhibits excellent PL properties with a high quantum yield (QY) of 34.8%, while Eu9Ti2 only has a QY of 1.4% because of the different photosensitizations of ligands to Eu3+ and Tb3+ ions in the photophysical process.

16.
Inorg Chem ; 61(9): 4121-4129, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35201748

RESUMEN

Metal clusters with well-defined crystal structures are extremely useful for studying the synergistic catalytic effects and associated catalytic mechanisms. In this study, two pairs of chiral lanthanide-transition metal clusters (R)/(S)-Co3Ln2 (Ln = Tb or Dy) were synthesized using Schiff-base ligands [(R)- or (S)-H3L] with multiple Lewis base sites (O sites). The as-prepared (R)/(S)-Co3Ln2 chiral metal clusters exhibited good catalytic functionality in the asymmetric synthesis of chiral cyanohydrins, with high conversions of up to 99% and medium-to-high enantiomeric excess values of up to 78%. The catalysis process followed a mechanism in which the bifunctional metal clusters of (R)/(S)-Co3Ln2, containing Lewis acid sites and Lewis base sites, simultaneously activated the aldehydes and trimethylsilyl cyanide, respectively. Consequently, synergistic catalysis was realized. The enantioselectivity of the different aldehydes and stereochemical configuration of the resulting products are attributed to the formation of a steric chiral pocket via the external chiral ligands on the clusters. In addition, heterogeneous asymmetric cyanosilylation using (R)/(S)-Co3Ln2 chiral metal clusters achieved high chemoselectivity and regioselectivity under mild conditions.

17.
Inorg Chem ; 61(50): 20531-20537, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36459444

RESUMEN

Hybrid organic-inorganic halide perovskites (HOIPs) have received continued interest for their structure diversity and potential application in optoelectronic, solar cells, nonlinear optics (NLO), and ferroelectrics. Structural symmetry breaking induced by water molecules in single-crystal-to-single-crystal (SCSC) transformations is beneficial to develop ferroelectrics or second-harmonic generation (SHG) materials. Along this line, a water-containing two-dimensional (2D) double perovskite, (C6H16N2)2AgBiBr8·H2O (1), was prepared. Acentric 1 suffered a twice SCSC transformation when subjected to dehydration and rehydration, where the new centric (C6H16N2)2AgBiBr8 (2) and acentric (C6H16N2)2AgBiBr8·0.5H2O (3) were generated. In contrast to the irreversible transformation from 1 to 2 (symmetry: P21 → Pmna), it is prominent that the reversible conversion of centric 2 to acentric 3 (symmetry: Pmna ↔ P21212). The result validated the effect of guest water on inducing structural transformation and symmetry breaking of 2D perovskites, inspiring further explorations on water-involved 2D materials.

18.
Angew Chem Int Ed Engl ; 61(16): e202200537, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148015

RESUMEN

The discovered giant clusters are always highly symmetric owing to the spontaneous assembly of one or two basic units. Herein we report the Gd44 Co28 crown and Gd95 Co60 cage, formulated as [Gd44 Co28 (IDA)20 (OH)72 (CO3 )12 (OAc)28 (H2 O)64 ]⋅(ClO4 )24 and [Na4 Gd95 Co60 (IDA)40 (OH)150 (CO3 )40 (OAc)58 (H2 O)164 ] ⋅ (ClO4 )41 (H2 IDA=iminodiacetic acid), respectively, by providing a library containing multiple low-nuclearity units. The heart-like units and crown-like tetramer found in both compounds indicate unprecedented assembly levels, leading to an atypical geometry characteristic compared to the giant clusters directly assembled by regular units. These two clusters not only significantly increase the size of Ln-Co clusters but also exhibit the enhanced magnetic entropy change at ultra-low temperatures. This work provided an effective way to fabricate cluster compounds with giant size and geometry complexity simultaneously.

19.
Angew Chem Int Ed Engl ; 61(8): e202116296, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-34921501

RESUMEN

Building blocks with multiple components are promising for the synthesis of complex molecular assemblies, but are rarely available. Herein, we report a modification procedure for a multi-component building block [Ln3 Ti(HSA)6 (SA)4 (H2 O)]- ({Ln3 Ti-SA}, H2 SA=salicylic acid, Ln=Eu/Gd) to form new building blocks {Ln3 Tix -MSA} (H2 MSA=5-methoxysalicylic acid, x=1, 2, 3) by constructing [Ti(MSA)3 ]2- units. The obtained {Ln3 Tix -MSA} can further assemble into a chiral Ln22 Ti14 ring with the formulae [Eu22 Ti14 (MSA)48 (HMSA)22 (CH3 COO)4 (H2 O)10 (iPrOH)] and [Gd22 Ti14 (MSA)46 (HMSA)26 (CH3 COO)4 (H2 O)8 ]. Parallel experiments without Ti4+ result in linear Ln chains. Detailed analysis shows that the [Ti(MSA)4 ]4- unit makes the originally variable Ln chains become available building blocks and the modified [Ti(MSA)3 ]2- further triggers interesting chiral-sorting behavior. Finally, the electronic adsorption and magneto-optic responses of these molecular rings are investigated.

20.
Chemistry ; 27(2): 614-617, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33200423

RESUMEN

Incorporating metal clusters within the skeleton of the organic polymers through a click reaction cannot only effectively prepare cluster-polymer composites, but also effectively avoid the cluster aggregation. Herein, an azide-containing lanthanide-titanium oxo cluster of Eu8 Ti10 -N3 (Eu8 Ti10 -N3 =[Eu8 Ti10 (µ3 -O)14 (H2 O)4 (OAc)2 (tbba)30 (paza)4 (THF)2 ]⋅4 THF⋅8 H2 O (1), Htbba=4-tert-butylbenzoic acid, Hpaza=4-azidobenzoate, HOAc=acetic acid, THF=tetrahydrofuran) through an in situ solvothermal reaction of 4-azidobenzoic acid and 4-tert-butylbenzoic acid. Reaction of 1 with PEG (PEG=methoxypoly(ethyleneglycol)alkyne, 2000 g mol-1 ) through CuI -catalyzed click chemistry generates a lanthanide-polymer composite of Eu8 Ti10 -N3 @PEG (2). Investigation with IR, 1 H NMR and ICP-OES of 2 indicates that the structural integrity of 1 is maintained in 2. Study of the luminescent properties of 1 and 2 reveals that the quantum yield of 1 itself basically remains unchanged in 2. Significantly, the formation of 2 cannot only effectively prevent the cluster 1 from aggregation, but also greatly enhance its solubility and adhesion to the substrate. Owing to the solubility and adhesion of luminescent materials being the key to their practical application, present work is thus of great significance for the development of metal cluster-polymer composite luminescent materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA