Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(26): 11935-11943, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38869984

RESUMEN

The use of CO2 as a feedstock for the production of carbon-based fuels and value-added chemicals offers a promising route toward carbon neutrality. In this study, two Cu-based electrocatalysts, namely, Cu24/N-C and Cu2/N-C, are successfully prepared by thermal treatment of Cu24 metal-organic polyhedron-loaded zeolitic imidazolate framework-8 (ZIF-8) nanocrystals (Cu24/ZIF-8) and Cu2 dinuclear compound-loaded ZIF-8 nanocrystals (Cu2/ZIF-8), respectively. Extensive structural and compositional analyses were conducted to confirm the formation of Cu nanocluster-loaded N-doped porous carbon supports in both Cu24/N-C and Cu2/N-C and Cu nanoparticles encapsulated by graphitic carbons in Cu2/N-C as well. These two Cu-based electrocatalysts exhibited different behaviors in the electrochemical CO2 reduction reaction (CO2RR). The Cu24/N-C electrocatalyst showed high selectivity for CO production, while Cu2/N-C showed a preference for alcohol generation. The excellent stability of Cu2/N-C over a 30 h continuous electrochemical reduction further highlights its potential for practical applications. The difference in electrocatalytic performance observed in the two catalysts for CO2RR was attributed to distinct catalytic sites associated with Cu nanoclusters and nanoparticles. This research reveals the significance of their structures and compositions for the development of highly selective electrocatalysts for CO2 reduction.

2.
Inorg Chem ; 62(14): 5700-5706, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36966515

RESUMEN

Low-cost high-efficiency H2 evolution is indispensable for its large-scale applications in the future. In the research, we expect to build high active photocatalysts for sunlight-driven H2 production by surface engineering to adjust the work function of photocatalyst surfaces, adsorption/desorption ability of substrates and products, and reaction activation energy barrier. Single-atom Pt-doped TiO2-x nanosheets (NSs), mainly including two facets of (001) and (101), with loading of Pt nanoparticles (NPs) at their edges (Pt/TiO2-x-SAP) are successfully prepared by an oxygen vacancy-engaged synthetic strategy. According to the theoretical simulation, the implanted single-atom Pt can change the surface work function of TiO2, which benefits electron transfer, and electrons tend to gather at Pt NPs adsorbed at (101) facet-related edges of TiO2 NSs for H2 evolution. Pt/TiO2-x-SAP exhibits ultrahigh photocatalytic performance of hydrogen evolution from dry methanol with a quantum yield of 90.8% that is ∼1385 times higher than pure TiO2-x NSs upon 365 nm light irradiation. The high H2 generation rate (607 mmol gcata-1 h-1) of Pt/TiO2-x-SAP is the basis for its potential applications in the transportation field with irradiation of UV-visible light (100 mW cm-2). Finally, lower adsorption energy for HCHO on Ti sites originated from TiO2 (001) doping single-atom Pt is responsible for high selective dehydrogenation of methanol to HCHO, and H tends to favorably gather at Pt NPs on the TiO2 (101) surface to produce H2.

3.
Angew Chem Int Ed Engl ; 61(6): e202113450, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34837440

RESUMEN

As low-dimensional lead-free hybrids with higher stability and lower toxicity than those of three-dimensional lead perovskites, organic antimony(III) halides show great application potential in opt-electronic field owing to diverse topologies along with exceptional optical properties. We report herein an antimony(III) hybrid (MePPh3 )2 SbCl5 with a zero-dimensional (0D) structure, which exhibits brilliant orange emission peaked at 593 nm with near-unity photoluminescent quantum yield (99.4 %). The characterization of photophysical properties demonstrates that the broadband emission with a microsecond lifetime (3.24 µs) arises from self-trapped emission (STE). Electrically driven organic light-emitting diodes (OLEDs) based on neat and doped films of (MePPh3 )2 SbCl5 were fabricated. The doped devices show significant improvement in comparison to non-doped OLEDs. Owing to the much improved surface morphology and balanced carrier transport in light-emitting layers of doped devices, the peak luminance, current efficiency (CE) and external quantum efficiency (EQE) are boosted from 82 cd m-2 to 3500 cd m-2 , 1.1 cd A-1 to 6.8 cd A-1 , and 0.7 % to 3.1 % relative to non-doped devices, respectively.

4.
Chem Commun (Camb) ; 60(36): 4822-4825, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38616724

RESUMEN

In this study, a novel electrocatalyst, namely Cu/N-pg-C derived from Cu-doped ZIF-8, was investigated for making syngas products with various H2/CO ratios. Different ratios of the electrocatalytic syngas products CO and H2 could be selected by adjusting the applied potential and hence tuning the transfer of electrons from N-doped graphitic carbon to the well-dispersed Cu nanoclusters.

5.
RSC Adv ; 13(18): 12059-12064, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37082376

RESUMEN

As one of the important types of two-dimensional materials, layered double hydroxides (LDHs) have been widely used in the biomedical field as carriers for drug delivery. In this case, we propose a facile synthetic method for preparing LDH-based self-assembly structures via a metal ions-mediated zeolitic imidazolate framework-8 (ZIF-8) transformation process. The as-made hierarchical porous ZIF-8@LDHs core-shell structures and porous cages of LDHs (PC-LDHs) in drug delivery systems are used to study the loading and release of small molecular weight drugs such as doxorubicin hydrochloride (DOX) and 5-fluorouracil (5-FU). The intrinsic properties and assembly structures of both carriers are investigated in depth for their impact on slow drug release. Finally, PC-LDHs outperform ZIF-8@LDHs core-shell structures in terms of drug delivery performance under various conditions, indicating that LDH nanosheets would play a decisive role in the drug delivery process. In the drug release system, scattered LDH nanosheets with smaller sizes than their assemblies are gradually produced, allowing nanodrugs to enter cancer tissues more easily across biological barriers. This study provides the preliminary preparation for an LDH-based nanomedicine platform in the field of cancer therapy.

6.
RSC Adv ; 13(13): 8822-8829, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36936836

RESUMEN

Integration of molecular transition-metal complexes and semiconductors is an appealing method to develop high-performance hybrid photocatalysts based on improvement of their solar energy harvesting ability and photogenerated charge carrier separation efficiency. Herein, Cu-TCPP modified TiO2 porous cages with oxygen vacancy defects, derived from NH2-MIL-125(Ti) nanocrystals, are successfully prepared to form PC-TiO2-d/Cu-TCPP hybrids via a surface assembly process. The PC-TiO2-d/Cu-TCPP hybrid shows an enhanced photodegradation efficiency (73.7%, 95.4%) towards tetracycline in the air under visible light or the simulated sunlight irradiation compared to PC-TiO2-d (33.7%, 81.1%) within 100 min. Moreover, the photocatalytic system is applicable to coupling both processes of solar fuel production and pollutant degradation. The PC-TiO2-d/Cu-TCPP hybrid exhibits a high hydrogen evolution rate of ∼2 mmol g-1 h-1 in the aqueous solution of tetracycline in an inert atmosphere upon irradiation by the simulated sunlight. In contrast, an inferior photocatalytic performance of hydrogen evolution is observed in pure water without the addition of tetracycline. Finally, the high sustainability of PC-TiO2-d/Cu-TCPP is mainly attributed to the strong interaction between the molecular photosensitizer and the semiconductor photocatalyst by oxygen vacancies and Cu(ii) ions.

7.
Artículo en Inglés | MEDLINE | ID: mdl-35682158

RESUMEN

The interplay of specific weather conditions and human activity results due to haze. When the haze arrives, individuals will use microblogs to communicate their concerns and feelings. It will be easier for municipal administrators to alter public communication and resource allocation under the haze if we can master the emotions of netizens. Psychological tolerance is the ability to cope with and adjust to psychological stress and unpleasant emotions brought on by adversity, and it can guide human conduct to some extent. Although haze has a significant impact on human health, environment, transportation, and other factors, its impact on human mental health is concealed, indirect, and frequently underestimated. In this study, psychological tolerance was developed as a psychological impact evaluation index to quantify the impact of haze on human mental health. To begin, data from microblogs in China's significantly haze-affected districts were collected from 2013 to 2019. The emotion score was then calculated using SnowNLP, and the subject index was calculated using the co-word network approach, both of which were used as social media evaluation indicators. Finally, utilizing ecological and socioeconomic factors, psychological tolerance was assessed at the provincial and prefecture level. The findings suggest that psychological tolerance differs greatly between areas. Psychological tolerance has a spatio-temporal trajectory in the timeseries as well. The findings offer a fresh viewpoint on haze's mental effects.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China/epidemiología , Ciudades , Monitoreo del Ambiente/métodos , Humanos , Material Particulado/análisis , Factores Socioeconómicos , Tiempo (Meteorología)
8.
Chem Commun (Camb) ; 58(61): 8520-8523, 2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-35801508

RESUMEN

Formic acid molecules, which can be produced by reducing CO2, are considered to be liquid organic hydrogen carriers. Herein, PCN-222(Cu) loaded with Au nanorods was prepared via following a seed-induced growth route, and it exhibited highly selective photocatalytic performance during H2 generation (rate: 2.33 ± 0.12 mmol g-1 h-1, QY: 2.7 ± 0.14%) from HCOOH dehydrogenation, enhanced by plasmonic Au.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA