Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant J ; 113(6): 1146-1159, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36575579

RESUMEN

Marsdenia tenacissima is a medicinal plant widely distributed in the calcium-rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome-level genome assembly in Apocynaceae using combined SMRT sequencing and Hi-C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole-genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene-family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium-related adaptive evolution in the M. tenacissima genome. Calcium-induced differentially expressed genes (DEGs) were mainly enriched in cell-wall-related processes. Domains (e.g. Fasciclin and Amb_all) and cis-elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell-wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium-signal-related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high-quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.


Asunto(s)
Marsdenia , Plantas Medicinales , Calcio , Marsdenia/genética , Filogenia , Fitomejoramiento
2.
BMC Plant Biol ; 24(1): 170, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443797

RESUMEN

BACKGROUND: Panax notoginseng (Burk) F. H. Chen is one of the most famous Chinese traditional medicinal plants. The taproot is the main organ producing triterpenoid saponins, and its development is directly linked to the quality and yield of the harvested P. notoginseng. However, the mechanisms underlying the dynamic metabolic changes occurring during taproot development of P. notoginseng are unknown. RESULTS: We carried out metabolomic and transcriptomic analyses to investigate metabolites and gene expression during the development of P. notoginseng taproots. The differentially accumulated metabolites included amino acids and derivatives, nucleotides and derivatives, and lipids in 1-year-old taproots, flavonoids and terpenoids in 2- and 3-year-old taproots, and phenolic acids in 3-year-old taproots. The differentially expressed genes (DEGs) are related to phenylpropanoid biosynthesis, metabolic pathway and biosynthesis of secondary metabolites at all three developmental stages. Integrative analysis revealed that the phenylpropanoid biosynthesis pathway was involved in not only the development of but also metabolic changes in P. notoginseng taproots. Moreover, significant accumulation of triterpenoid saponins in 2- and 3-year-old taproots was highly correlated with the up-regulated expression of cytochrome P450s and uridine diphosphate-dependent glycosyltransferases genes. Additionally, a gene encoding RNase-like major storage protein was identified to play a dual role in the development of P. notoginseng taproots and their triterpenoid saponins synthesis. CONCLUSIONS: These results elucidate the molecular mechanism underlying the accumulation of and change relationship between primary and secondary metabolites in P. notoginseng taproots, and provide a basis for the quality control and genetic improvement of P. notoginseng.


Asunto(s)
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Metaboloma , Perfilación de la Expresión Génica
3.
Planta ; 259(5): 98, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522041

RESUMEN

MAIN CONCLUSION: A stable genetic transformation system for Erigeron breviscapus was developed. We cloned the EbYUC2 gene and genetically transformed it into Arabidopsis thaliana and E. breviscapus. The leaf number, YUC2 gene expression, and the endogenous auxin content in transgenic plants were significantly increased. Erigeron breviscapus is a prescription drug for the clinical treatment of cardiovascular and cerebrovascular diseases. The rosette leaves have the highest content of the major active compound scutellarin and are an important component in the yield of E. breviscapus. However, little is known about the genes related to the leaf number and flowering time of E. breviscapus. In our previous study, we identified three candidate genes related to the leaf number and flowering of E. breviscapus by combining resequencing data and genome-wide association study (GWAS). However, their specific functions remain to be characterized. In this study, we cloned and transformed the previously identified full-length EbYUC2 gene into Arabidopsis thaliana, developed the first stable genetic transformation system for E. breviscapus, and obtained the transgenic plants overexpressing EbYUC2. Compared with wild-type plants, the transgenic plants showed a significant increase in the number of leaves, which was correlated with the increased expression of EbYUC2. Consistently, the endogenous auxin content, particularly indole-3-acetic acid, in transgenic plants was also significantly increased. These results suggest that EbYUC2 may control the leaf number by regulating auxin biosynthesis, thereby laying a foundation for revealing the molecular mechanism governing the leaf number and flowering time of E. breviscapus.


Asunto(s)
Arabidopsis , Erigeron , Erigeron/genética , Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Ácidos Indolacéticos , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Transformación Genética
4.
Planta ; 253(5): 91, 2021 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-33818668

RESUMEN

MAIN CONCLUSION: Two UDP-glycosyltransferases from Panax japonicus var. major were identified, and the biosynthetic pathways of three oleanane-type ginsenosides (chikusetsusaponin IVa, ginsenoside Ro, zingibroside R1) were elucidated. Chikusetsusaponin IVa and ginsenoside Ro are primary active components formed by stepwise glycosylation of oleanolic acid in five medicinal plants of the genus Panax. However, the key UDP-glycosyltransferases (UGTs) in the biosynthetic pathway of chikusetsusaponin IVa and ginsenoside Ro are still unclear. In this study, two UGTs (PjmUGT1 and PjmUGT2) from Panax japonicus var. major involved in the biosynthesis of chikusetsusaponin IVa and ginsenoside Ro were identified based on bioinformatics analysis, heterologous expression and enzyme assays. The results show that PjmUGT1 can transfer a glucose moiety to the C-28 carboxyl groups of oleanolic acid 3-O-ß-D-glucuronide and zingibroside R1 to form chikusetsusaponin IVa and ginsenoside Ro, respectively. Meanwhile, PjmUGT2 can transfer a glucose moiety to oleanolic acid 3-O-ß-D-glucuronide and chikusetsusaponin IVa to form zingibroside R1 and ginsenoside Ro. This work uncovered the biosynthetic mechanism of chikusetsusaponin IVa and ginsenoside Ro, providing the rational production of valuable saponins through synthetic biology strategy.


Asunto(s)
Ginsenósidos/metabolismo , Glicosiltransferasas/metabolismo , Ácido Oleanólico/análogos & derivados , Panax/metabolismo , Uridina Difosfato/metabolismo , Glicosiltransferasas/análisis , Glicosiltransferasas/genética , Ácido Oleanólico/metabolismo , Panax/enzimología
5.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6149-6162, 2021 Dec.
Artículo en Zh | MEDLINE | ID: mdl-34951242

RESUMEN

R2 R3-MYB transcription factors are ubiquitous in plants, playing a role in the regulation of plant growth, development, and secondary metabolism. In this paper, the R2 R3-MYB transcription factors were identified by bioinformatics analysis of the genomic data of Erigeron breviscapus, and their gene sequences, structures, physical and chemical properties were analyzed. The functions of R2 R3-MYB transcription factors were predicted by cluster analysis. Meanwhile, the expression patterns of R2 R3-MYB transcription factors in response to hormone treatments were analyzed. A total of 108 R2 R3-MYB transcription factors, named EbMYB1-EbMYB108, were identified from the genome of E. breviscapus. Most of the R2 R3-MYB genes carried 2-4 exons. The phylogenetic tree of MYBs in E. breviscapus and Arabidopsis thaliala was constructed, which classified 234 MYBs into 30 subfamilies. The MYBs in the five MYB subfamilies of A.thaliala were clustered into independent clades, and those in E. breviscapus were clustered into four clades. The transcriptome data showed that MYB genes were differentially expressed in different tissues of E. breviscapus and in response to the treatments with exogenous hormones such as ABA, SA, and GA for different time. The transcription of 13 R2 R3-MYB genes did not change significantly, and the expression patterns of some genes were up-regulated or down-regulated with the extension of hormone treatment time. This study provides a theoretical basis for revealing the mechanisms of R2 R3-MYB transcription factors in regulating the growth and development, stress(hormone) response, and active ingredient accumulation in E. breviscapus.


Asunto(s)
Erigeron , Genes myb , Proteínas de Plantas , Factores de Transcripción , Erigeron/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Mol Phylogenet Evol ; 145: 106734, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31972240

RESUMEN

Orthoptera is the most diverse order of polyneopterans, and the forewing and hindwing of its members exhibit extremely variability from full length to complete loss in many groups; thus, this order provides a good model for studying the effects of insect flight ability on the evolutionary constraints on and evolutionary rate of the mitochondrial genome. Based on a data set of mitochondrial genomes from 171 species, including 43 newly determined, we reconstructed Orthoptera phylogenetic relationships and estimated the divergence times of this group. The results supported Caelifera and Ensifera as two monophyletic groups, and revealed that Orthoptera originated in the Carboniferous (298.997 Mya). The date of divergence between the suborders Caelifera and Ensifera was 255.705 Mya, in the late Permian. The major lineages of Acrididae seemed to have radiated in the Cenozoic, and the six patterns of rearrangement of 171 Orthoptera mitogenomes mostly occurred in the Cretaceous and Cenozoic. Based on phylogenetic relationships and ancestral state reconstruction, we analysed the evolutionary selection pressure on and evolutionary rate of mitochondrial protein-coding genes (mPCGs). The results indicated that during approximately 300 Mya of evolution, these genes experienced purifying selection to maintain their function. Flightless orthopteran insects accumulated more non-synonymous mutations than flying species and experienced more relaxed evolutionary constraints. The different wing types had different evolutionary rates, and the mean evolutionary rate of Orthoptera mitochondrial mPCGs was 13.554 × 10-9 subs/s/y. The differences in selection pressures and evolutionary rates observed between the mitochondrial genomes suggested that functional constraints due to locomotion play an important role in the evolution of mitochondrial DNA in orthopteran insects with different wing types.


Asunto(s)
Evolución Biológica , Mitocondrias/genética , Ortópteros/clasificación , Animales , Biodiversidad , Sistemas de Lectura Abierta/genética , Ortópteros/anatomía & histología , Ortópteros/genética , Filogenia , ARN Ribosómico/genética , Alas de Animales/anatomía & histología
7.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093420

RESUMEN

Erigeron breviscapus (Vant.) Hand.-Mazz. is a famous traditional Chinese medicine that has positive effects on the treatment of cardiovascular and cerebrovascular diseases. With the increase of market demand (RMB 500 million per year) and the sharp decrease of wild resources, it is an urgent task to cultivate high-quality and high-yield varieties of E. breviscapus. However, it is difficult to obtain homozygous lines in breeding due to the self-incompatibility (SI) of E. breviscapus. Here, we first proved that E. breviscapus has sporophyte SI (SSI) characteristics. Characterization of the ARC1 gene in E. breviscapus showed that EbARC1 is a constitutive expression gene located in the nucleus. Overexpression of EbARC1 in Arabidopsis thaliana L. (Col-0) could cause transformation of transgenic lines from self-compatibility (SC) into SI. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays indicated that EbARC1 and EbExo70A1 interact with each other in the nucleus, and the EbARC1-ubox domain and EbExo70A1-N are the key interaction regions, suggesting that EbARC1 may ubiquitinate EbExo70A to regulate SI response. This study of the SSI mechanism in E. breviscapus has laid the foundation for further understanding SSI in Asteraceae and breeding E. breviscapus varieties.


Asunto(s)
Arabidopsis , Erigeron/genética , Proteínas de Plantas , Plantas Modificadas Genéticamente , Ubiquitina-Proteína Ligasas , Arabidopsis/enzimología , Arabidopsis/genética , Erigeron/enzimología , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitina-Proteína Ligasas/genética
8.
BMC Plant Biol ; 19(1): 451, 2019 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-31655543

RESUMEN

BACKGROUND: Taproot thickening is a complex biological process that is dependent on the coordinated expression of genes controlled by both environmental and developmental factors. Panax notoginseng is an important Chinese medicinal herb that is characterized by an enlarged taproot as the main organ of saponin accumulation. However, the molecular mechanisms of taproot enlargement are poorly understood. RESULTS: A total of 29,957 differentially expressed genes (DEGs) were identified during the thickening process in the taproots of P. notoginseng. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment revealed that DEGs associated with "plant hormone signal transduction," "starch and sucrose metabolism," and "phenylpropanoid biosynthesis" were predominantly enriched. Further analysis identified some critical genes (e.g., RNase-like major storage protein, DA1-related protein, and Starch branching enzyme I) and metabolites (e.g., sucrose, glucose, fructose, malate, and arginine) that potentially control taproot thickening. Several aspects including hormone crosstalk, transcriptional regulation, homeostatic regulation between sugar and starch, and cell wall metabolism, were identified as important for the thickening process in the taproot of P. notoginseng. CONCLUSION: The results provide a molecular regulatory network of taproot thickening in P. notoginseng and facilitate the further characterization of the genes responsible for taproot formation in root medicinal plants or crops.


Asunto(s)
Redes Reguladoras de Genes , Metaboloma , Panax notoginseng/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Panax notoginseng/crecimiento & desarrollo , Panax notoginseng/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología
9.
Electrophoresis ; 40(20): 2699-2705, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31172539

RESUMEN

Copper is an indispensable trace element for human health. Too much or too little intake of copper ion (Cu2+ ) can lead to its own adverse health conditions. Therefore, detection of Cu2+ is always of vital importance. In this work, a simple sensor was developed for rapid detection of trace Cu2+ in water, in which L-cysteine (Cys) as a molecular probe was self-assembled on a gold interdigital electrode to form a monolayer for specific capture of Cu2+ . The interfacial capacitance of interdigital electrode was detected to indicate the target adsorption level under an AC signal working as the excitation to induce directed movement and enrichment of Cu2+ to the electrode surface. This sensor reached a limit of detection of 4.14 fM and a satisfactory selectivity against eight other ions (Zn2+ , Hg2+ , Pb2+ , Cd2+ , Mg2+ , Fe2+ , As3+ , and As5+ ). Testing of spiked tap water was also performed, demonstrating the sensor's usability. This sensor as well as the detection method shows a great application potential in fields such as environmental monitoring and medical diagnosis.


Asunto(s)
Cobre/análisis , Cisteína/química , Técnicas Electroquímicas/métodos , Contaminantes Químicos del Agua/análisis , Técnicas Electroquímicas/instrumentación , Electrodos , Diseño de Equipo , Límite de Detección , Modelos Lineales , Metales Pesados/análisis
10.
Zoolog Sci ; 35(4): 367-372, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30079837

RESUMEN

In this study, we sequenced the complete mitogenome of Falco amurensis (Falconiformes, Falconidae). The F. amurensis mitogenome is 17,464 bp long, and contains 37 genes, including 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs, and two non-coding regions (control region and pseudo-control region). Most PCGs initiate with ATG and terminate with TAA. atp8 exhibits the highest evolutionary rate, with cox1 showing the lowest. rrnS and rrnL contain three domains with 46 helices and six domains with 59 helices, respectively. All tRNAs have a typical cloverleaf secondary structure, except that trnS(agy) lacks the dihydrouracil arm. The control region is located between trnT and trnP and the pseudo-control between trnE and trnF. Phylogenetic relationships of 23 species from Falconiformes were analyzed based on the nucleotide sequences of the 13 PCGs and two rRNAs. The results support Falco as a monophyletic taxon, and F. amurensis has a close relationship with the clade containing F. cherrug/F. rusticolus/F. peregrinus.


Asunto(s)
ADN Mitocondrial/genética , Falconiformes/genética , Genoma , Animales , Variación Genética , Filogenia , Especificidad de la Especie
11.
Proc Natl Acad Sci U S A ; 111(5): 1766-71, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24443552

RESUMEN

Using an expanded genetic code, antibodies with site-specifically incorporated nonnative amino acids were produced in stable cell lines derived from a CHO cell line with titers over 1 g/L. Using anti-5T4 and anti-Her2 antibodies as model systems, site-specific antibody drug conjugates (NDCs) were produced, via oxime bond formation between ketones on the side chain of the incorporated nonnative amino acid and hydroxylamine functionalized monomethyl auristatin D with either protease-cleavable or noncleavable linkers. When noncleavable linkers were used, these conjugates were highly stable and displayed improved in vitro efficacy as well as in vivo efficacy and pharmacokinetic stability in rodent models relative to conventional antibody drug conjugates conjugated through either engineered surface-exposed or reduced interchain disulfide bond cysteine residues. The advantages of the oxime-bonded, site-specific NDCs were even more apparent when low-antigen-expressing (2+) target cell lines were used in the comparative studies. NDCs generated with protease-cleavable linkers demonstrated that the site of conjugation had a significant impact on the stability of these rationally designed prodrug linkers. In a single-dose rat toxicology study, a site-specific anti-Her2 NDC was well tolerated at dose levels up to 90 mg/kg. These experiments support the notion that chemically defined antibody conjugates can be synthesized in commercially relevant yields and can lead to antibody drug conjugates with improved properties relative to the heterogeneous conjugates formed by nonspecific chemical modification.


Asunto(s)
Anticuerpos/metabolismo , Inmunoconjugados/metabolismo , Preparaciones Farmacéuticas/síntesis química , Ingeniería de Proteínas/métodos , Animales , Anticuerpos/sangre , Anticuerpos/química , Anticuerpos/toxicidad , Técnicas de Cultivo Celular por Lotes , Células CHO , Muerte Celular/efectos de los fármacos , Línea Celular , Cricetinae , Cricetulus , Cisteína/metabolismo , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Inmunoconjugados/toxicidad , Preparaciones Farmacéuticas/sangre , Preparaciones Farmacéuticas/química , Estabilidad Proteica/efectos de los fármacos , Ratas
13.
Zhongguo Yi Liao Qi Xie Za Zhi ; 40(5): 359-62, 2016 Sep.
Artículo en Zh | MEDLINE | ID: mdl-29792633

RESUMEN

Objective: Using modern information technology means to manage implant medical traceability. Methods: Collect and analyze the implantable medical device traceability management problems inside, combine with their own work practice, learn from the advanced methods of other industry and foreign key links for traceability management and process of study and analysis, find out the model, scheme and basic requirements for the traceability management by network. Results: Design and develop an information system for traceability management of implant medical instruments, including the flow of goods, supervision, traceback and employing the traceability. Conclusion: The system well regulates the traceability management system, unifies the traceability management processes, improves the efficiency of traceability management. The design of this system also conforms to the future development of traceability management direction, many aspects also meet needs of administrations, the medical departments and the users.


Asunto(s)
Gestión de la Información , Prótesis e Implantes , Sistemas de Información , Sistemas de Información Administrativa
14.
Proc Natl Acad Sci U S A ; 109(40): 16101-6, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22988081

RESUMEN

Antibody-drug conjugates (ADCs) allow selective targeting of cytotoxic drugs to cancer cells presenting tumor-associated surface markers, thereby minimizing systemic toxicity. Traditionally, the drug is conjugated nonselectively to cysteine or lysine residues in the antibody. However, these strategies often lead to heterogeneous products, which make optimization of the biological, physical, and pharmacological properties of an ADC challenging. Here we demonstrate the use of genetically encoded unnatural amino acids with orthogonal chemical reactivity to synthesize homogeneous ADCs with precise control of conjugation site and stoichiometry. p-Acetylphenylalanine was site-specifically incorporated into an anti-Her2 antibody Fab fragment and full-length IgG in Escherichia coli and mammalian cells, respectively. The mutant protein was selectively and efficiently conjugated to an auristatin derivative through a stable oxime linkage. The resulting conjugates demonstrated excellent pharmacokinetics, potent in vitro cytotoxic activity against Her2(+) cancer cells, and complete tumor regression in rodent xenograft treatment models. The synthesis and characterization of homogeneous ADCs with medicinal chemistry-like control over macromolecular structure should facilitate the optimization of ADCs for a host of therapeutic uses.


Asunto(s)
Aminoácidos/química , Anticuerpos Monoclonales Humanizados/química , Neoplasias de la Mama/tratamiento farmacológico , Inmunoconjugados/química , Ingeniería de Proteínas/métodos , Aminobenzoatos/química , Animales , Línea Celular Tumoral , Descubrimiento de Drogas/métodos , Ensayo de Inmunoadsorción Enzimática , Escherichia coli , Femenino , Humanos , Inmunoconjugados/farmacocinética , Inmunoconjugados/uso terapéutico , Inmunoglobulina G/química , Ratones , Ratones SCID , Oligopéptidos/química , Receptor ErbB-2/química , Receptor ErbB-2/inmunología , Trastuzumab
15.
Cell Signal ; 115: 111031, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38168631

RESUMEN

Tumor-associated macrophages (TAMs) mainly exhibit the characteristics of M2-type macrophages, and the regulation of TAM polarization is a new target for cancer therapy, among which lncRNAs are key regulatory molecules. This study aimed to explore the effects of lncRNA-HOXC-AS2 on non-small cell lung cancer (NSCLC) by regulating TAM polarization. THP-1 cells were used to differentiate into macrophages, and TAMs were obtained by coculture with A549 cells. The M1/M2 cell phenotype and HOXC-AS2 expression were detected, and A549-derived exosomes (A549-exo) were used to elucidate the effects of A549 on macrophage polarization and HOXC-AS2 expression. Then, by interfering with HOXC-AS2 or STAT1, the effects of HOXC-AS2 regulation of STAT1 on the TAM phenotype and STAT1/SOCS1 and STAT1/CIITA pathways were analyzed, and the proliferation and metastasis of NSCLC cells in the coculture system were also detected. Results showed that HOXC-AS2 expression in M2 macrophages and TAMs was significantly higher than that in M1 macrophages, and A549-exo promoted HOXC-AS2 expression and M2 polarization. Intervention HOXC-AS2 resulted in increased M1 marker expression, decreased M2 marker expression, and activation of STAT1/SOCS1 and STAT1/CIITA pathways in TAMs. In addition, HOXC-AS2 was mainly expressed in the cytoplasm of TAMs and could bind to STAT1. Further experiments confirmed that intervention HOXC-AS2 promoted the M1 polarization of TAMs by targeting STAT1 and weakened the promoting effects of TAMs on the proliferation and metastasis of NSCLC. In conclusion, HOXC-AS2 inhibited the activation of STAT1/SOCS1 and STAT1/CIITA pathways and promoted M2 polarization of TAMs by binding with STAT1, thus promoting NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , ARN Largo no Codificante , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos Asociados a Tumores/metabolismo , Macrófagos/metabolismo , Línea Celular Tumoral , Microambiente Tumoral , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Factor de Transcripción STAT1/metabolismo
16.
Front Genet ; 15: 1349673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38317660

RESUMEN

Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.

17.
Plant Commun ; 5(6): 100835, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38425040

RESUMEN

Cucurbitacin IIa is a triterpenoid isolated exclusively from Hemsleya plants and a non-steroidal anti-inflammatory drug that functions as the main ingredient of prescription Hemslecin capsules and tablets in China. Synthetic biology provides new strategies for production of such valuable cucurbitacins at a large scale; however, the biosynthetic pathway of cucurbitacin IIa has been unknown, and the heterologous production of cucurbitacins in galactose medium has been expensive and low yielding. In this study, we characterized the functions of genes encoding two squalene epoxidases (HcSE1-2), six oxidosqualene cyclases (HcOSC1-6), two CYP450s (HcCYP87D20 and HcCYP81Q59), and an acyltransferase (HcAT1) in cucurbitacin IIa biosynthesis by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana. We achieved high-level production of the key cucurbitacin precursor 11-carbonyl-20ß-hydroxy-Cuol from glucose in yeast via modular engineering of the mevalonate pathway and optimization of P450 expression levels. The resulting yields of 46.41 mg/l 11-carbonyl-20ß-hydroxy-Cuol and 126.47 mg/l total cucurbitacin triterpenoids in shake flasks are the highest yields yet reported from engineered microbes. Subsequently, production of 11-carbonyl-20ß-hydroxy-Cuol by transient gene expression in tobacco resulted in yields of 1.28 mg/g dry weight in leaves. This work reveals the key genes involved in biosynthesis of prescription cucurbitacin IIa and demonstrates that engineered yeast cultivated with glucose can produce high yields of key triterpenoid intermediates. We describe a low-cost and highly efficient platform for rapid screening of candidate genes and high-yield production of pharmacological triterpenoids.


Asunto(s)
Vías Biosintéticas , Nicotiana , Saccharomyces cerevisiae , Triterpenos , Nicotiana/genética , Nicotiana/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Cucurbitacinas/genética , Cucurbitacinas/metabolismo , Plantas Modificadas Genéticamente/genética , Ingeniería Metabólica/métodos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(8): 2188-91, 2013 Aug.
Artículo en Zh | MEDLINE | ID: mdl-24159873

RESUMEN

An optical monitoring method is proposed for the rapid, non destructive measurements of chlorophyll concentration (Chl-a) in the surface sediments of emerged tidal flat, and it can be further applied in remote sensing work. Hyperspectral reflectance of intertidal sediments were measured in day time at the tidal flats of the Sishili Bay, the Northern Yellow Sea, and surface sediments (3 mm) were sampled for the in-door measurements of Chl-a. On the basis of the reflectance at 650, 675 and 700 nm, the indices of normalized difference index of microbenthos (NDI-MPB) and trough depth (T-depth) were proposed for the measurements of microphytobenthos biomass. T-depth can be used to remove the linear background spectral noises and indicate the existence of microphytobenthos; Good linear relationship was observed between NDI-MPB and Chl-a content in sediments (2.22-49.36 mg x m(-2), r > 0.99), which may be used to monitor the biomass of microphy to benthos.


Asunto(s)
Clorofila/análisis , Sedimentos Geológicos/microbiología , Fitoplancton/metabolismo , Agua de Mar/microbiología , Análisis Espectral , Océanos y Mares , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Tecnología de Sensores Remotos/métodos , Dispersión de Radiación
19.
Mitochondrial DNA B Resour ; 8(1): 7-9, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36620315

RESUMEN

Epiverta chelonia (Mader 1933; Coleoptera: Coccinellidae) is an important economically and scientifically valuable insect. In this study, the first complete mitochondrial genome of E. chelonia was sequenced and characterized using next-generation sequencing techniques. The circular mitogenome of E. chelonia consists of 17,347 bp including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region (D-loop). The base composition was AT-biased (75.77%). Bayesian Inference and Maximum likelihood phylogenetic trees strongly supported the monophyly of Coccinellinae. Also, E. chelonia was supported as the sister group of Subcoccinella vigintiquatuorpunctata, within Epilachninae. Thus, the E. chelonia mitochondrial genome will be a fundamental resource for understanding the molecular phylogenetic relationships of the species-rich family Coccinellidae of Coleoptera.

20.
Medicine (Baltimore) ; 102(40): e35380, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37800813

RESUMEN

The prognosis for advanced melanoma (AM) is extremely poor. Some patients are already in an advanced stage at the time of their first diagnosis and face a significant risk of early death. This study predicted all-cause early death and cancer-specific early death in patients with AM by identifying independent risk factors, building 2 separate nomogram models, and validating the efficiency of the models. A total of 2138 patients diagnosed with AM from 2010 to 2015 were registered in the Surveillance, Epidemiology and End Results (SEER) database and randomly assigned to a training cohort and a validation cohort. Logistic regression models were used to identify the associated independent risk factors. These factors have also been used to build nomograms for early deaths. Next, we validated the model's predictive power by examining subject operating characteristic curves, then applied calibration curves to assess the accuracy of the models, and finally, tested the net benefit of interventions based on decision curve analysis. The results of the logistic regression model showed that marital status, primary site, histological type, N stage, surgery, chemotherapy, bone, liver, lung and brain metastases were significant independent risk factors for early death. These identified factors contributed to the creation of 2 nomograms, which predict the risk of all-cause early death and cancer-specific early death in patients with AM. In the all-cause early death model, the area under the curve was 0.751 and 0.759 for the training and validation groups, respectively, whereas in the cancer-specific early death model, the area under the curve was 0.740 and 0.757 for the training and validation groups. Calibration curves indicated a high degree of agreement between the predicted and observed probabilities, and the decision curve analysis demonstrated a high value for the model in terms of its applicability in clinical settings. These nomograms have practical applications in predicting the risk of early death in patients with AM, helping oncologists to intervene early and develop more personalized treatment strategies.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Humanos , Investigación , Neoplasias Encefálicas/epidemiología , Calibración , Bases de Datos Factuales , Nomogramas , Programa de VERF , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA