Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.418
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
2.
Cell ; 172(4): 881-887.e7, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29395327

RESUMEN

Generation of genetically uniform non-human primates may help to establish animal models for primate biology and biomedical research. In this study, we have successfully cloned cynomolgus monkeys (Macaca fascicularis) by somatic cell nuclear transfer (SCNT). We found that injection of H3K9me3 demethylase Kdm4d mRNA and treatment with histone deacetylase inhibitor trichostatin A at one-cell stage following SCNT greatly improved blastocyst development and pregnancy rate of transplanted SCNT embryos in surrogate monkeys. For SCNT using fetal monkey fibroblasts, 6 pregnancies were confirmed in 21 surrogates and yielded 2 healthy babies. For SCNT using adult monkey cumulus cells, 22 pregnancies were confirmed in 42 surrogates and yielded 2 babies that were short-lived. In both cases, genetic analyses confirmed that the nuclear DNA and mitochondria DNA of the monkey offspring originated from the nucleus donor cell and the oocyte donor monkey, respectively. Thus, cloning macaque monkeys by SCNT is feasible using fetal fibroblasts.


Asunto(s)
Clonación de Organismos , Técnicas de Transferencia Nuclear , Animales , Blastocisto/citología , Blastocisto/metabolismo , Femenino , Ácidos Hidroxámicos/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Histona Demetilasas con Dominio de Jumonji/metabolismo , Macaca fascicularis , Embarazo
4.
Nature ; 604(7906): 557-562, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388221

RESUMEN

Stimulator of interferon genes (STING) is an adaptor protein in innate immunity against DNA viruses or bacteria1-5. STING-mediated immunity could be exploited in the development of vaccines or cancer immunotherapies. STING is a transmembrane dimeric protein that is located in the endoplasmic reticulum or in the Golgi apparatus. STING is activated by the binding of its cytoplasmic ligand-binding domain to cyclic dinucleotides that are produced by the DNA sensor cyclic GMP-AMP (cGAMP) synthase or by invading bacteria1,6,7. Cyclic dinucleotides induce a conformational change in the STING ligand-binding domain, which leads to a high-order oligomerization of STING that is essential for triggering the downstream signalling pathways8,9. However, the cGAMP-induced STING oligomers tend to dissociate in solution and have not been resolved to high resolution, which limits our understanding of the activation mechanism. Here we show that a small-molecule agonist, compound 53 (C53)10, promotes the oligomerization and activation of human STING through a mechanism orthogonal to that of cGAMP. We determined a cryo-electron microscopy structure of STING bound to both C53 and cGAMP, revealing a stable oligomer that is formed by side-by-side packing and has a curled overall shape. Notably, C53 binds to a cryptic pocket in the STING transmembrane domain, between the two subunits of the STING dimer. This binding triggers outward shifts of transmembrane helices in the dimer, and induces inter-dimer interactions between these helices to mediate the formation of the high-order oligomer. Our functional analyses show that cGAMP and C53 together induce stronger activation of STING than either ligand alone.


Asunto(s)
Proteínas de la Membrana , Nucleótidos Cíclicos , Proteínas de Ciclo Celular , Microscopía por Crioelectrón , Fosfatos de Dinucleósidos/metabolismo , Humanos , Inmunidad Innata , Ligandos , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/metabolismo , Proteínas Supresoras de Tumor
5.
Am J Hum Genet ; 110(7): 1200-1206, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311464

RESUMEN

Genome-wide polygenic risk scores (GW-PRSs) have been reported to have better predictive ability than PRSs based on genome-wide significance thresholds across numerous traits. We compared the predictive ability of several GW-PRS approaches to a recently developed PRS of 269 established prostate cancer-risk variants from multi-ancestry GWASs and fine-mapping studies (PRS269). GW-PRS models were trained with a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 controls that we previously used to develop the multi-ancestry PRS269. Resulting models were independently tested in 1,586 cases and 1,047 controls of African ancestry from the California Uganda Study and 8,046 cases and 191,825 controls of European ancestry from the UK Biobank and further validated in 13,643 cases and 210,214 controls of European ancestry and 6,353 cases and 53,362 controls of African ancestry from the Million Veteran Program. In the testing data, the best performing GW-PRS approach had AUCs of 0.656 (95% CI = 0.635-0.677) in African and 0.844 (95% CI = 0.840-0.848) in European ancestry men and corresponding prostate cancer ORs of 1.83 (95% CI = 1.67-2.00) and 2.19 (95% CI = 2.14-2.25), respectively, for each SD unit increase in the GW-PRS. Compared to the GW-PRS, in African and European ancestry men, the PRS269 had larger or similar AUCs (AUC = 0.679, 95% CI = 0.659-0.700 and AUC = 0.845, 95% CI = 0.841-0.849, respectively) and comparable prostate cancer ORs (OR = 2.05, 95% CI = 1.87-2.26 and OR = 2.21, 95% CI = 2.16-2.26, respectively). Findings were similar in the validation studies. This investigation suggests that current GW-PRS approaches may not improve the ability to predict prostate cancer risk compared to the PRS269 developed from multi-ancestry GWASs and fine-mapping.


Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias de la Próstata , Humanos , Masculino , Población Negra/genética , Estudio de Asociación del Genoma Completo , Herencia Multifactorial/genética , Neoplasias de la Próstata/genética , Factores de Riesgo , Población Blanca/genética
6.
J Biol Chem ; 300(1): 105510, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042492

RESUMEN

Tendinopathy is a disorder of musculoskeletal system that primarily affects athletes and the elderly. Current treatment options are generally comprised of various exercise and loading programs, therapeutic modalities, and surgical interventions and are limited to pain management. This study is to understand the role of TRIM54 (tripartite motif containing 54) in tendonitis through in vitro modeling with tendon-derived stem cells (TDSCs) and in vivo using rat tendon injury model. Initially, we observed that TRIM54 overexpression in TDSCs model increased stemness and decreased apoptosis. Additionally, it rescued cells from tumor necrosis factor α-induced inflammation, migration, and tenogenic differentiation. Further, through immunoprecipitation studies, we identified that TRIM54 regulates inflammation in TDSCs by binding to and ubiquitinating YOD1. Further, overexpression of TRIM54 improved the histopathological score of tendon injury as well as the failure load, stiffness, and young modulus in vivo. These results indicated that TRIM54 played a critical role in reducing the effects of tendon injury. Consequently, these results shed light on potential therapeutic alternatives for treating tendinopathy.


Asunto(s)
Endopeptidasas , Proteínas Musculares , Tendinopatía , Tioléster Hidrolasas , Anciano , Animales , Humanos , Ratas , Apoptosis , Diferenciación Celular/fisiología , Endopeptidasas/metabolismo , Células Madre , Tendinopatía/metabolismo , Traumatismos de los Tendones/terapia , Traumatismos de los Tendones/metabolismo , Tendones/metabolismo , Tioléster Hidrolasas/metabolismo , Proteínas Musculares/metabolismo
7.
Acc Chem Res ; 57(3): 375-385, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38240205

RESUMEN

ConspectusLithium-ion batteries (LIBs) have achieved great success and dominated the market of portable electronics and electric vehicles owing to their high energy density and long-term cyclability. However, if applying LIBs for large-scale energy storage scenarios, such as regulating the output of electricity generated by sustainable energy in the future age of carbon neutrality, the current electrochemistry of LIBs based on Li-ion interaction/deinteraction between a transition-metal oxide cathode and graphite anode will suffer from problems of scarce natural resources (e.g., Li, Co, and Ni) and high energy consumption/CO2 emission involved in the production of electrodes. Similarly, other commercial batteries such as lead-acid batteries and nickel-metal hydride batteries are also plagued by these issues.In contrast, organic electrode materials, especially carbonyl materials, exhibit advantages of abundant resources, renewability, high capacity, environmental friendliness, and structural designability and have shown great promise for various rechargeable batteries in recent years. However, organic carbonyl electrode materials generally exhibit unsatisfactory cycling stability and rate performance, which are highly dependent on the electrolyte and interfacial chemistry. Appropriate electrolytes and a stable electrode/electrolyte interface would be beneficial for preventing the dissolution of organic carbonyl electrode materials and/or their redox intermediates in electrolytes and promoting fast ion transport between the electrode and electrolyte. In this regard, designing an appropriate electrolyte and constructing a stable electrode/electrolyte interface are the keys to enhancing the comprehensive performance of organic carbonyl electrode materials.In this Account, on the basis of our progress and related works from other groups in the past decade, we afford an overview of understanding the effects of electrolyte and interfacial chemistry on the electrochemical performance of organic carbonyl electrode materials. We will start by briefly introducing the basic properties, working mechanisms, and issues of organic carbonyl electrode materials. Then, the implications of electrolyte and electrode/electrolyte interfacial chemistry on electrochemical performance will be summarized and highlighted through discussing the performance of organic carbonyl electrodes in different types of electrolytes (organic liquid and aqueous and solid-state electrolytes). Meanwhile, the design principles of electrolytes and interfacial chemistry for organic carbonyl electrodes are also discussed. A representative example is that organic carbonyl electrode materials often exhibit better electrochemical performance in ether-based electrolytes than in ester-based electrolytes, which could be mainly attributed to the stable and robust solid electrolyte interphase (SEI) formed on carbonyl electrodes in the ether-based electrolyte. This example demonstrates the importance of investigating the electrode/electrolyte interfacial chemistry of organic carbonyl electrode materials. Finally, future perspectives on designing appropriate electrolytes and understanding electrode/electrolyte interfacial chemistry will also be discussed. It is meaningful to thoroughly reveal the dynamic evolution of the electrode/electrolyte interface during discharge/charge processes and evaluate the compatibility between electrolytes and organic carbonyl electrode materials under practical conditions using limited quantities of electrolytes and high areal-specific-capacity electrodes in the future. This Account could attract more attention to electrolytes and the electrode/electrolyte interfacial chemistry of organic carbonyl electrode materials and finally promote their future commercial applications.

8.
Immunity ; 45(5): 1162-1175, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851916

RESUMEN

Cell-to-cell expression variation (CEV) is a prevalent feature of even well-defined cell populations, but its functions, particularly at the organismal level, are not well understood. Using single-cell data obtained via high-dimensional flow cytometry of T cells as a model, we introduce an analysis framework for quantifying CEV in primary cell populations and studying its functional associations in human cohorts. Analyses of 840 CEV phenotypes spanning multiple baseline measurements of 14 proteins in 28 T cell subpopulations suggest that the quantitative extent of CEV can exhibit substantial subject-to-subject differences and yet remain stable within healthy individuals over months. We linked CEV to age and disease-associated genetic polymorphisms, thus implicating CEV as a biomarker of aging and disease susceptibility and suggesting that it might play an important role in health and disease. Our dataset, interactive figures, and software for computing CEV with flow cytometry data provide a resource for exploring CEV functions.


Asunto(s)
Envejecimiento/inmunología , Linfocitos T/inmunología , Estudios de Cohortes , Femenino , Citometría de Flujo , Predisposición Genética a la Enfermedad , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Nano Lett ; 24(9): 2876-2884, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38385324

RESUMEN

Upconversion (UC)/downconversion (DC)-luminescent lanthanide-doped nanocrystals (LDNCs) with near-infrared (NIR, 650-1700 nm) excitation have been gaining increasing popularity in bioimaging. However, conventional NIR-excited LDNCs cannot be degraded and eliminated eventually in vivo owing to intrinsic "rigid" lattices, thus constraining clinical applications. A biodegradability-tunable heterogeneous core-shell-shell luminescent LDNC of Na3HfF7:Yb,Er@Na3ZrF7:Yb,Er@CaF2:Yb,Zr (abbreviated as HZC) was developed and modified with oxidized sodium alginate (OSA) for multimode bioimaging. The dynamic "soft" lattice-Na3Hf(Zr)F7 host and the varying Zr4+ doping content in the outmoster CaF2 shell endowed HZC with tunable degradability. Through elaborated core-shell-shell coating, Yb3+/Er3+-coupled UC red and green and DC second near-infrared (NIR-II) emissions were, respectively, enhanced by 31.23-, 150.60-, and 19.42-fold when compared with core nanocrystals. HZC generated computed tomography (CT) imaging contrast effects, thus enabling NIR-II/CT/UC trimodal imaging. OSA modification not only ensured the exemplary biocompatibility of HZC but also enabled tumor-specific diagnosis. The findings would benefit the clinical imaging translation of LDNCs.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Hafnio , Circonio , Nanopartículas/química , Tomografía Computarizada por Rayos X
10.
Neuroimage ; 297: 120701, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38914210

RESUMEN

Due to a high degree of symptom overlap in the early stages, with movement disorders predominating, Parkinson's disease (PD) and multiple system atrophy (MSA) may exhibit a similar decline in motor areas, yet they differ in their spread throughout the brain, ultimately resulting in two distinct diseases. Drawing upon neuroimaging analyses and altered motor cortex excitability, potential diffusion mechanisms were delved into, and comparisons of correlations across distinct disease groups were conducted in a bid to uncover significant pathological disparities. We recruited thirty-five PD, thirty-seven MSA, and twenty-eight matched controls to conduct clinical assessments, electromyographic recording, and magnetic resonance imaging scanning during the "on medication" state. Patients with neurodegeneration displayed a widespread decrease in electrophysiology in bilateral M1. Brain function in early PD was still in the self-compensatory phase and there was no significant change. MSA patients demonstrated an increase in intra-hemispheric function coupled with a decrease in diffusivity, indicating a reduction in the spread of neural signals. The level of resting motor threshold in healthy aged showed broad correlations with both clinical manifestations and brain circuits related to left M1, which was absent in disease states. Besides, ICF exhibited distinct correlations with functional connections between right M1 and left middle temporal gyrus in all groups. The present study identified subtle differences in the functioning of PD and MSA related to bilateral M1. By combining clinical information, cortical excitability, and neuroimaging intuitively, we attempt to bring light on the potential mechanisms that may underlie the development of neurodegenerative disease.

11.
J Am Chem Soc ; 146(1): 1100-1108, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38127285

RESUMEN

Organic carbonyl electrode materials have shown great promise for high-performance lithium batteries due to their high capacity, renewability, and environmental friendliness. However, their practical application is hindered by the high solubility of these materials in traditional electrolytes, leading to poor cycling stability and serious shuttle effects. Here, we develop a series of hydrofluoroethers (HFEs) with weak electrostatic interaction toward organic carbonyl cathode materials, aiming to address the dissolution issue and achieve high cycling stability in lithium batteries. Theoretical calculations reveal that the electrostatic interactions between HFEs and pyrene-4,5,9,10-tetraone (PTO) are significantly weaker compared with common solvents such as 1,2-dimethoxyethane. Consequently, the dissolution of PTO in the HFE-based electrolyte is remarkably reduced, as observed by in situ ultraviolet-visible spectra. Notably, when using the electrolyte based on 1,1,1,3,3,3-hexafluoro-2-methoxypropane with a certain coordination ability, PTO exhibits excellent cycling stability with a high capacity retention of 78% after 1000 cycles. This work proposes the regulation of electrostatic interactions to inhibit the dissolution of organic carbonyl cathode materials and significantly enhance their cycle life.

12.
J Am Chem Soc ; 146(14): 10167-10176, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38536043

RESUMEN

The π-bond enrichment frameworks not only serve as a crucial building block in organic synthesis but also assume a pivotal role in the fields of materials science, biomedicine, photochemistry, and other related disciplines owing to their distinctive structural characteristics. The incorporation of various substituents into the C═C double bonds of tetrasubstituted alkenes is currently a highly significant research area. However, the synthesis of tetrasubstituted alkenes with diverse substituents on double bonds poses a significant challenge in achieving stereoselectivity. Here, we reported an efficient and convergent route of Cu-catalyzed borylalkynylation of both symmetrical and unsymmetrical 1,3-diynes, B2pin2, and acetylene bromide to the construction of boronated phenyldiethynylethylene (BPDEE) derivatives with excellent chemo-, stereo-, and regioselectivities. BPDEE derivatives could transform into novel tetrasubstituted organic π-conjugated gem-diphenyldiethynylethylene (DPDEE), vinylphenyldiethynylethylene (VPDEE), and phenyltriethynylethylene (PTEE) derivatives by a stepwise process, which provides a flexible platform for the synthesis of complex π-bond enrichment frameworks that were difficult to synthesize by previous methods. The initial optical characterization revealed that the synthesized molecules exhibited aggregation-induced emission (AIE) properties, which further establishes the groundwork for future applications and enriches and advances the field of functional π-conjugated frameworks research.

13.
J Am Chem Soc ; 146(18): 12743-12749, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38652821

RESUMEN

Aqueous batteries, with the advantages of high safety and low cost, are highly promising for large-scale energy storage. However, freezing of the aqueous electrolyte limits the low-temperature operation. Here, we propose and achieve a highly dispersed solvation structure in the electrolyte by coupling nonaggregated Cl- anions, which reduces the water cluster size and prevents the solidification of the aqueous electrolyte until -136.3 °C. The low-temperature LiCl electrolyte exhibits a high ionic conductivity (1.0 mS cm-1) at -80 °C and enables a stable low-temperature Ag/AgCl reference electrode at -50 °C. Moreover, the polyaniline-based battery can work at an extremely low temperature of -100 °C and shows superior cycling performance of 4000 cycles at -40 °C with 95.7% capacity retention. This work elucidates the correlation between the anion effect and the thermodynamic transition of the electrolyte, offering a novel approach for designing low-temperature electrolytes.

14.
J Am Chem Soc ; 146(8): 5597-5604, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38366992

RESUMEN

Rechargeable aqueous batteries are potential systems for large-scale energy storage due to their high safety and low cost. However, developing aqueous batteries with high sustainability, affordability, and reversibility is urgent and challenging. Here we report an amphoteric aluminum hydroxyacetate (AlAc(OH)2) electrolyte with the ability of bipolar ionization of H+ and OH-, which facilitates the redox reactions at both the anthraquinone (AQ) anode and nickel hydroxide (Ni(OH)2) cathode. The bipolar ionization ability of the AlAc(OH)2(H2O)3 solvation structure results from the strong polarization ability of Al3+ and OH-. The H+/OH- dissociation ability with a dissociation constant of 5.0/3.0 is stronger than that of water (14.0), which boosts the simultaneous stable redox reactions of electrodes. Specifically, H+ uptake prevents the AQ anode from the formation of an ionic bond, suppressing the electrode dissolution, whereas OH- provides the local alkaline environment for the stable conversion reaction of the Ni(OH)2 cathode. The AQ anode in the designed AQ||Ni(OH)2 battery delivers a discharge capacity of 243.9 mAh g-1 and a capacity retention of 78.2% after 300 cycles with high reversibility. Moreover, a pouch cell with a discharge capacity of 0.90 Ah was assembled, exhibiting an energy density of 44.7 Wh kg-1 based on the total mass of the battery. This work significantly widens the types of aqueous batteries and represents a design philosophy of bipolar electrolytes and distinct electrochemical reactions with H+ and OH-.

15.
Int J Cancer ; 154(5): 830-841, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37861207

RESUMEN

We intended to update human papillomavirus (HPV) prevalence and p16INK4a positivity in oropharyngeal squamous cell carcinomars (SCC), and calculate HPV attributable fraction (AF) for oropharyngeal SCC by geographic region. We searched Medline, Embase, and the Cochrane Library to identify published studies of HPV prevalence and p16INK4a positivity alone or together in oropharyngeal SCC before December 28, 2021. Studies that reported type-specific HPV DNA prevalence using broad-spectrum PCR-based testing methods were included. We estimated pooled HPV prevalence, type-specific HPV prevalence, and p16INK4a positivity. AF of HPV was calculated by geographic region. One hundred and thirty-four studies including 12 139 cases were included in our analysis. The pooled HPV prevalence estimate for oropharyngeal SCC was 48.1% (95% confidence interval [CI] 43.2-53.0). HPV prevalence varied significantly by geographic region, and the highest HPV prevalence in oropharyngeal SCC was noted in North America (72.6%, 95% CI 63.8-80.6). Among HPV positive cases, HPV 16 was the most common type with a prevalence of 40.2% (95% CI 35.7-44.7). The pooled p16INK4a positivity in HPV positive and HPV16 positive oropharyngeal SCC cases was 87.2% (95% CI 81.6-91.2) and 91.7% (84.3-97.2). The highest AFs of HPV and HPV16 were noted in North America at 69.6% (95% CI 53.0-91.5) and 63.0% (48.0-82.7). [Correction added on 31 October 2023, after first online publication: the percentage symbol (%) was missing and has been added to 63.0% (48.0-82.7) in the Abstract and Conclusion.] A significant proportion of oropharyngeal SCC was attributable to HPV. HPV16 accounts for the majority of HPV positive oropharyngeal SCC cases. These findings highlight the importance of HPV vaccination in the prevention of a substantial proportion of oropharyngeal SCC cases.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , ADN Viral/genética , ADN Viral/análisis , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Virus del Papiloma Humano , Papillomaviridae/genética , Papillomaviridae/metabolismo , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/epidemiología , Infecciones por Papillomavirus/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello
16.
Small ; : e2309801, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528431

RESUMEN

Solid-state lithium batteries (SSLBs) are regarded as next-generation energy storage devices because of their advantages in terms of safety and energy density. However, the poor interfacial compatibility and low ionic conductivity seriously hinder their development. Electrospinning is considered as a promising method for fabricating solid-state electrolytes (SSEs) with controllable nanofiber structures, scalability, and cost-effectiveness. Numerous efforts are dedicated to electrospinning SSEs with high ionic conductivity and strong interfacial compatibility, but a comprehensive summary is lacking. Here, the history of electrospinning SSEs is overeviewed and introduce the electrospinning mechanism, followed by the manipulation of electrospun nanofibers and their utilization in SSEs, as well as various methods to improve the ionic conductivity of SSEs. Finally, new perspectives aimed at enhancing the performance of SSEs membranes and facilitating their industrialization are proposed. This review aims to provide a comprehensive overview and future perspective on electrospinning technology in SSEs, with the goal of guiding the further development of SSLBs.

17.
Mol Carcinog ; 63(7): 1209-1220, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38725218

RESUMEN

It's been long thought that CD8+ cytotoxic T cells play a major role in T cell-mediated antitumor responses, whereas CD4+ T cells merely provide some assistance to CD8+ T cells as the "helpers." In recent years, numerous studies support the notion that CD4+ T cells play an indispensable role in antitumor responses. Here, we summarize and discuss the current knowledge regarding the roles of CD4+ T cells in antitumor responses and immunotherapy, with a focus on the molecular and cellular mechanisms behind these observations. These new insights on CD4+ T cells may pave the way to further optimize cancer immunotherapy.


Asunto(s)
Linfocitos T CD4-Positivos , Inmunoterapia , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Linfocitos T CD4-Positivos/inmunología , Animales , Inmunoterapia/métodos , Linfocitos T CD8-positivos/inmunología
18.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35037026

RESUMEN

There is a lack of robust generalizable predictive biomarkers of response to immune checkpoint blockade in multiple types of cancer. We develop hDirect-MAP, an algorithm that maps T cells into a shared high-dimensional (HD) expression space of diverse T cell functional signatures in which cells group by the common T cell phenotypes rather than dimensional reduced features or a distorted view of these features. Using projection-free single-cell modeling, hDirect-MAP first removed a large group of cells that did not contribute to response and then clearly distinguished T cells into response-specific subpopulations that were defined by critical T cell functional markers of strong differential expression patterns. We found that these grouped cells cannot be distinguished by dimensional-reduction algorithms but are blended by diluted expression patterns. Moreover, these identified response-specific T cell subpopulations enabled a generalizable prediction by their HD metrics. Tested using five single-cell RNA-seq or mass cytometry datasets from basal cell carcinoma, squamous cell carcinoma and melanoma, hDirect-MAP demonstrated common response-specific T cell phenotypes that defined a generalizable and accurate predictive biomarker.


Asunto(s)
Inmunoterapia , Melanoma , Biomarcadores , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Linfocitos T
19.
Nat Mater ; 22(6): 769-776, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37169972

RESUMEN

Metal-organic framework (MOF) membranes are energy-efficient candidates for molecular separations, but it remains a considerable challenge to eliminate defects at the atomic scale. The enlargement of pores due to defects reduces the molecular-sieving performance in separations and hampers the wider application of MOF membranes, especially for liquid separations, owing to insufficient stability. Here we report the elimination of lattice defects in MOF membranes based on a high-probability theoretical coordination strategy that creates sufficient chemical potential to overcome the steric hindrance that occurs when completely connecting ligands to metal clusters. Lattice defect elimination is observed by real-space high-resolution transmission electron microscopy and studied with a mathematical model and density functional theory calculations. This leads to a family of high-connectivity MOF membranes that possess ångström-sized lattice apertures that realize high and stable separation performance for gases, water desalination and an organic solvent azeotrope. Our strategy could enable a platform for the regulation of nanoconfined molecular transport in MOF pores.

20.
Org Biomol Chem ; 22(19): 3904-3909, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38656504

RESUMEN

A method for the α-oxidation and sulfonation of benzyl secondary amines was developed utilizing Ir(III) or Eosin Y as the photocatalyst in the presence of O2 as a green oxidant. Using commercial substrates, 37 products from cyclic and acyclic benzylamines were achieved with good functional group compatibility in 48-87% yields. Furthermore, tetrahydroisoquinoline protected by an Ac or a Boc group was oxidized under standard conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA