Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 32(9): 16491-16505, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38859274

RESUMEN

Bound states in the continuum (BICs) in photonic crystal slabs are characterized as vortex centers in far-field polarization and infinite quality (Q) factors, which can be dynamically manipulated in momentum space to construct the singularity configurations with functionalities such as merging BICs for further suppress scattering loss of nearby resonance. However, the vast majority of research focuses on two types of intrinsic BICs for simplicity, because these polarization singularities affect each other, and are even prone to annihilation. Here, we introduce the extrinsic (Fabry-Pérot) BICs and combine them with the intrinsic BICs to merge diverse BICs in momentum space. The extrinsic BICs can move independently of the intrinsic BICs, providing an unprecedented degree of freedom to reduce the complexity of constructing merging BIC configurations. Interestingly, an interaction of oppositely charged BICs that is collision beyond annihilation is revealed, which only exchanges the topological charge of BICs but not affect their existence. Following the proposed strategy, four-types-BICs merging and steerable three-types merging are achieved at the Γ and off-Γ points, further boosting the Q factor scaling rule up to Q∝k x-14 and Q∝k x-6 respectively. Our findings suggest a systematic route to arrange abundant BICs, may facilitate some applications including beam steering, optical trapping and enhancing the light-matter interactions.

2.
Opt Lett ; 49(1): 153-156, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134175

RESUMEN

Chiroptical resonances inspired by bound states in the continuum (BICs) open a new, to the best of our knowledge, avenue to enhance chiral light-matter interaction. Symmetry breaking is the widely employed way, wherein the circularly polarized states (CPSs) arise from BIC splitting. Here, we utilize a far-field interference mechanism to create ultrahigh-Q (typically, 2.36 × 106) chiroptical resonance beyond BIC splitting, in which CPSs coexist with BICs in the momentum space. Accordingly, the spin-selective absorption with ultranarrow linewidth is achieved at the CPS points, which can be regulated by monolayer transition metal dichalcogenides (TMDCs). In addition, the chiral response of our scheme exhibits the incident-direction robustness and flexible tunability. Our findings may facilitate potential applications in light manipulation, spin-valley interaction, and chiral sensing.

3.
Int J Biol Macromol ; : 134915, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39173798

RESUMEN

The ammonium ethyl acryloylphosphoramidate (AEA) was synthesized by acrylamide, ethanolamine, and phosphorus oxychloride; the nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) were applied to analyze the structure of AEA molecule. Using the dip-cure process to treat raw cotton (RC) with AEA flame retardant, the finished fabric had excellent flame retardancy. The cone calorimeter, thermogravimetric, FTIR, and vertical flame tests illustrated finished fabrics underwent synergistic and condensed-phase flame retardation. The finished fabric also had excellent durability, and the higher the sealing degree of phosphorus atoms, the higher the durability. The limiting oxygen index (LOI) of RC-AEA3-20 (raw cotton finished with 20 wt% AEA3) reached 45.4 %. However, the LOI only dropped to 34.9 % after 50 laundering cycles under the AATCC 61-2013 3 A standard. The excellent durability and FTIR analyses of finished fabrics suggested that the -N-P(=O)-O-C- covalent bond was formed between flame retardant and cellulose. This covalent bond exhibited a p-π conjugation effect, enhancing the stability of -N-P(=O)-O-C- bond, improving the durability of finished fabrics. In conclusion, adding reactive groups into flame retardants, like CH2=CH- and -N-P(=O)-O-NH4+, could increase the durability of finished cotton fabrics.

4.
ACS Omega ; 9(1): 1416-1423, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222543

RESUMEN

Infrared plasmonic sensors offer enhanced biomolecule detection potential over visible sensors due to unique spectral fingerprints, enhanced sensitivity, lower interference, and label-free, nondestructive analysis capabilities. Moreover, multimode plasmonic sensors are highly advantageous for their ability to outperform single-mode counterparts through long-wavelength tuning, enhanced information retrieval, and reduced false results through multimode data cross-referencing. In this study, to achieve a high quality factor and enhanced sensitivity simultaneously, we employed silver square block arrays (SSBs) in a metal-dielectric-metal configuration. The proposed design supports three modes resulting from gap plasmons and propagating surface plasmon resonances, enabling the detection of a broad spectrum of biomolecules. Designed sensors demonstrate notable sensitivities in different modes: Mode I achieves 525 nm/RIU, Mode II reaches 1287 nm/RIU, and Mode III records 812 nm/RIU, while maintaining the quality factor of Mode I-17, Mode II-356, and Mode III-107. The figure of merit for Mode I is 7 RIU-1, for Mode II it is 375 RIU-1, and for Mode III it is 98 RIU-1. Different concentrations of glucose and hemoglobin are efficiently detected with the proposed sensor, showing great potential for its biosensing application and real-time monitoring of biomolecule dynamics. Taken together, the proposed sensor exhibits the capability to identify diverse types of biomolecules and holds the potential to serve as a preliminary screening tool for various biomolecules.

5.
Int J Biol Macromol ; 262(Pt 2): 130144, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360228

RESUMEN

The phosphoramide phosphorus ester phosphate ammonium (PPEPA) flame retardant was synthesized by phosphorus oxychloride and ethanolamine, and its structure was characterized by nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). Cotton textiles treated with 20 wt% PPEPA (CT-PPEPA3) would have high durability and flame retardance. The limiting oxygen index (LOI) of CT-PPEPA3 was found to be 46.5 %, while after undergoing 50 laundering cycles (LCs) following the AATCC 61-2013 3 A standard, the LOI only decreased to 31.4 %. Scanning electron microscopy and X-ray diffraction analyses suggested the penetration of PPEPA molecules into the interior of cotton fibers, resulting in a minor alteration of the cellulose crystal structure. The excellent durability, FTIR, and energy-dispersive X-ray of CT-PPEPA3 provided evidence for the formation of -N-P(=O)-O-C- and -O-P(=O)-O-C- covalent bonds between the PPEPA molecules and cellulose. The -N-P(=O)-O-C- bond exhibited a p-π conjugation effect, leading to enhanced stability and improved durability of the flame-retardant cotton textiles. Vertical flame, thermogravimetric, and cone calorimetry tests demonstrated that the CT-PPEPA3 underwent condensed-phase and synergistic flame retardation. Additionally, these finished cotton textiles retained adequate breaking strength and softness, making them suitable for various applications. In conclusion, the incorporation of the -N-P(=O)-ONH4 group into the phosphorus ester phosphate ammonium flame retardant demonstrated effective enhancement of the fire resistance and durability of treated cotton textiles.


Asunto(s)
Compuestos de Amonio , Retardadores de Llama , Fósforo , Fosfatos , Fosforamidas , Textiles , Fibra de Algodón , Celulosa
6.
Sci Adv ; 10(2): eadk2265, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198541

RESUMEN

A long-range, high-precision, and compact transverse displacement metrology is of crucial importance in both industries and scientific researches. However, it is a great challenge to measure arbitrary two-dimensional (2D) displacement with angstrom-level precision and hundred-micrometer range. Here, we demonstrated a prototype of high-precision 2D-displacement metrology with matrix metasurface. Light passing through the metasurface is diffracted into three beams in horizontal (H), vertical (V), and diagonal (D) linear polarization. 2D transverse displacement of the metasurface relative to the incident light beam is retrieved from the interferential optical powers arisen from coherent superposition between H-polarized and D-polarized beams or V-polarized and D-polarized beams. We experimentally demonstrate that arbitrary displacement in 2D plane can be determined with high precision down to 0.3 nm in a large range of 200 micrometers. Our work broadens the application scope of metasurface and paves the way for development of ultrasensitive optical 2D displacement metrology.

7.
Int J Biol Macromol ; 260(Pt 2): 129293, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38199543

RESUMEN

A flame retardant (FR) hexachlorocyclotriphosphazene diethylenetriamine ammonium phosphoric acid (HDAPA) was synthesized. Vertical flammability test and limiting oxygen index (LOI) results showed that cotton samples finished with HDAPA solutions (15 % and 20 %) could pass vertical flame retardancy test, and LOIs reached 30.1 % and 35.4 % even after 50 laundering cycles according to AATCC 61-2013 3A washing standard (3A), performing flame retardancy and washing durability. Meanwhile, Fourier transform infrared and X-ray photoelectron spectroscopy analyses suggested that HDAPA was grafted on cotton fibers through -P(=O)-O-C covalent bond. Total heat release (1.98 MJ/m2) and char residue (16.2 %) of HDAPA treated cotton were much lower than those (4.26 MJ/m2, 3.2 %) of untreated cotton. Thermogravimetry results showed HDAPA changed thermal decomposition pathway of cotton fabric, which was further supported by thermogravimetric-Fourier infrared spectrometer results, revealing HDAPA performed a condensed phase flame retardancy mechanism. Scanning electron microscopy implied HDAPA entered amorphous region of cotton fibers to react with cellulose. Mechanical properties of HDAPA treated cotton decreased a little. Although the synthesis process used formaldehyde but no free formaldehyde released. In consequence, the aforementioned results indicated that the introduction of -N=P-(N)3- and -P(=O)(O-NH4+)2 groups to FR was an viable method to improve flame retardancy and durability.


Asunto(s)
Compuestos de Amonio , Retardadores de Llama , Ácidos Fosfóricos , Fósforo , Retardadores de Llama/análisis , Formaldehído
8.
Int J Biol Macromol ; 260(Pt 2): 129543, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246451

RESUMEN

A cationic, durable flame retardant for cotton fabrics, 6-(2-(dimethoxy phosphoryl)-2-(trimethyl ammonium)) methoxy-2-methoxy-polysaccharide ammonium phosphate (DTPAP), was synthesized. Its structure was verified by NMR and FTIR spectroscopy. According to the FTIR spectra and X-ray photoelectron spectroscopy (XPS), DTPAP formed P(=O)-O-C bonds with cellulose molecules and firmly grafted to cotton fabrics, giving the fabric a high durability. DTPAP-25-treated fabrics passed the vertical flame test (VFT), and the limiting oxygen index (LOI) was 43.9 %. After 50 laundering cycles (LCs), the DTPAP-25-treated fabrics had an LOI of 29.9 %, passed the VFT, and retained their flame retardancy. EDS data showed that, compared with engrafted cationic ammonium phosphate flame retardants, the DTPAP-treated fabrics contained fewer metal ions. Cone calorimetry data showed that DTPAP-25-treated fabrics did not display concentrated heat release. The results suggested that DTPAP exhibited a condensed-phase flame retardant mechanism, and the introduction of cations into the ammonium phosphate flame retardant reduced ion exchange, which improved the durability.


Asunto(s)
Retardadores de Llama , Fosfatos , Almidón , Textiles , Cationes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA