Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Heart J ; 39(16): 1446-1455, 2018 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-29020304

RESUMEN

Aims: Loss-of-function mutations in the hERG gene causes long-QT syndrome type 2 (LQT2), a condition associated with reduced IKr current. Four different mutation classes define the molecular mechanisms impairing hERG. Among them, Class 2 mutations determine hERG trafficking defects. Lumacaftor (LUM) is a drug acting on channel trafficking already successfully tested for cystic fibrosis and its safety profile is well known. We hypothesize that LUM might rescue also hERG trafficking defects in LQT2 and exert anti-arrhythmic effects. Methods and results: From five LQT2 patients, we generated lines of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) harbouring Class 1 and 2 mutations. The effects of LUM on corrected field potential durations (cFPD) and calcium-handling irregularities were verified by multi electrode array and by calcium transients imaging, respectively. Molecular analysis was performed to clarify the mechanism of action of LUM on hERG trafficking and calcium handling. Long-QT syndrome type 2 induced pluripotent stem cell-derived cardiomyocytes mimicked the clinical phenotypes and showed both prolonged cFPD (grossly equivalent to the QT interval) and increased arrhythmias. Lumacaftor significantly shortened cFPD in Class 2 iPSC-CMs by correcting the hERG trafficking defect. Furthermore, LUM seemed to act also on calcium handling by reducing RyR2S2808 phosphorylation in both Class 1 and 2 iPSC-CMs. Conclusion: Lumacaftor, a drug already in clinical use, can rescue the pathological phenotype of LQT2 iPSC-CMs, particularly those derived from Class 2 mutated patients. Our results suggest that the use of LUM in LQT2 patients not protected by ß-blockers is feasible and may represent a novel therapeutic option.


Asunto(s)
Aminopiridinas/uso terapéutico , Antiarrítmicos/uso terapéutico , Benzodioxoles/uso terapéutico , Síndrome de QT Prolongado/tratamiento farmacológico , Potenciales de Acción/efectos de los fármacos , Adolescente , Adulto , Calcio/metabolismo , Canal de Potasio ERG1/efectos de los fármacos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de QT Prolongado/genética , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Resultado del Tratamiento
2.
Stem Cells ; 35(10): 2129-2137, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28699232

RESUMEN

Activation of signal transducer and activator of transcription 3 (STAT3) is imperative for mammalian development, specifically cardiogenesis. STAT3 phosphorylation and acetylation are key post-translational modifications that regulate its transcriptional activity. Significance of such modifications during human cardiogenesis remains elusive. Using human pluripotent stem cells to recapitulate cardiogenesis, two independently modified STAT3α (92 kDa) isoforms (phosphorylated and acetylated), which perform divergent functions were identified during cardiomyocyte (CM) formation. Phosphorylated STAT3α functioned as the canonical transcriptional activator, while acetylated STAT3α underwent caspase-3-mediated cleavage to generate a novel STAT3ζ fragment (∼45 kDa), which acted as a molecular adaptor integral to the ErbB4-p38γ signaling cascade in driving CM formation. While STAT3α knockdown perturbed cardiogenesis by eliminating both post-translationally modified STAT3α isoforms, caspase-3 knockdown specifically abrogates the function of acetylated STAT3α, resulting in limited STAT3ζ formation thereby preventing nuclear translocation of key cardiac transcription factor Nkx2-5 that disrupted CM formation. Our findings show the coexistence of two post-translationally modified STAT3α isoforms with distinct functions and define a new role for STAT3 as a molecular adaptor that functions independently of its canonical transcriptional activity during human cardiogenesis. Stem Cells 2017;35:2129-2137.


Asunto(s)
Caspasa 3/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Transcripción STAT3/metabolismo , Acetilación , Humanos , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Factores de Transcripción
3.
Stem Cells ; 34(10): 2461-2470, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27324647

RESUMEN

Mechanisms determining intrinsic differentiation bias inherent to human pluripotent stem cells (hPSCs) toward cardiogenic fate remain elusive. We evaluated the interplay between ErbB4 and Epidemal growth factor receptor (EGFR or ErbB1) in determining cardiac differentiation in vitro as these receptor tyrosine kinases are key to heart and brain development in vivo. Our results demonstrate that during cardiac differentiation, cell fate biases exist in hPSCs due to cardiac/neuroectoderm divergence post cardiac mesoderm stage. Stage-specific up-regulation of EGFR in concert with persistent Wnt3a signaling post cardiac mesoderm favors commitment toward neural progenitor cells (NPCs). Inhibition of EGFR abrogates these effects with enhanced (>twofold) cardiac differentiation efficiencies by increasing proliferation of Nkx2-5 expressing cardiac progenitors while reducing proliferation of Sox2 expressing NPCs. Forced overexpression of ErbB4 rescued cardiac commitment by augmenting Wnt11 signaling. Convergence between EGFR/ErbB4 and canonical/noncanonical Wnt signaling determines cardiogenic fate in hPSCs. Stem Cells 2016;34:2461-2470.


Asunto(s)
Ectodermo/citología , Miocitos Cardíacos/citología , Neuronas/citología , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptor ErbB-4/metabolismo , Diferenciación Celular , Línea Celular , Linaje de la Célula , Receptores ErbB/metabolismo , Humanos , Miocitos Cardíacos/metabolismo , Organogénesis , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA