RESUMEN
To investigate potential correlations between the susceptibility values of certain brain regions and the severity of disease or neurodevelopmental status in children with autism spectrum disorder (ASD), 18 ASD children and 15 healthy controls (HCs) were recruited. The neurodevelopmental status was assessed by the Gesell Developmental Schedules (GDS) and the severity of the disease was evaluated by the Autism Behavior Checklist (ABC). Eleven brain regions were selected as regions of interest and the susceptibility values were measured by quantitative susceptibility mapping. To evaluate the diagnostic capacity of susceptibility values in distinguishing ASD and HC, the receiver operating characteristic (ROC) curve was computed. Pearson and Spearman partial correlation analysis were used to depict the correlations between the susceptibility values, the ABC scores, and the GDS scores in the ASD group. ROC curves showed that the susceptibility values of the left and right frontal white matter had a larger area under the curve in the ASD group. The susceptibility value of the right globus pallidus was positively correlated with the GDS-fine motor scale score. These findings indicated that the susceptibility value of the right globus pallidus might be a viable imaging biomarker for evaluating the neurodevelopmental status of ASD children.
Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Hierro , Imagen por Resonancia Magnética , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Masculino , Femenino , Niño , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Hierro/metabolismo , Hierro/análisis , Preescolar , Mapeo Encefálico/métodos , Sustancia Blanca/diagnóstico por imagen , Globo Pálido/diagnóstico por imagenRESUMEN
Aberrant susceptibility due to iron level abnormality and brain network disconnections are observed in Alzheimer's disease (AD), with disrupted iron homeostasis hypothesized to be linked to AD pathology and neuronal loss. However, whether associations exist between abnormal quantitative susceptibility mapping (QSM), brain atrophy, and altered brain connectome in AD remains unclear. Based on multi-parametric brain imaging data from 30 AD patients and 26 healthy controls enrolled at the China-Japan Friendship Hospital, we investigated the abnormality of the QSM signal and volumetric measure across 246 brain regions in AD patients. The structural and functional connectomes were constructed based on diffusion MRI tractography and functional connectivity, respectively. The network topology was quantified using graph theory analyses. We identified seven brain regions with both reduced cortical thickness and abnormal QSM (p < 0.05) in AD, including the right superior frontal gyrus, left superior temporal gyrus, right fusiform gyrus, left superior parietal lobule, right superior parietal lobule, left inferior parietal lobule, and left precuneus. Correlations between cortical thickness and network topology computed across patients in the AD group resulted in statistically significant correlations in five of these regions, with higher correlations in functional compared to structural topology. We computed the correlation between network topological metrics, QSM value and cortical thickness across regions at both individual and group-averaged levels, resulting in a measure we call spatial correlations. We found a decrease in the spatial correlation of QSM and the global efficiency of the structural network in AD patients at the individual level. These findings may provide insights into the complex relationships among QSM, brain atrophy, and brain connectome in AD.
Asunto(s)
Enfermedad de Alzheimer , Conectoma , Humanos , Enfermedad de Alzheimer/patología , Conectoma/métodos , Encéfalo , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Atrofia/patología , HierroRESUMEN
BACKGROUND: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults. This study aimed to construct immune-related long non-coding RNAs (lncRNAs) signature and radiomics signature to probe the prognosis and immune infiltration of GBM patients. METHODS: We downloaded GBM RNA-seq data and clinical information from The Cancer Genome Atlas (TCGA) project database, and MRI data were obtained from The Cancer Imaging Archive (TCIA). Then, we conducted a cox regression analysis to establish the immune-related lncRNAs signature and radiomics signature. Afterward, we employed a gene set enrichment analysis (GSEA) to explore the biological processes and pathways. Besides, we used CIBERSORT to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, we investigated the relationship between the immune-related lncRNAs signature, radiomics signature and immune checkpoint genes. Finally, we constructed a multifactors prognostic model and compared it with the clinical prognostic model. RESULTS: We identified four immune-related lncRNAs and two radiomics features, which show the ability to stratify patients into high-risk and low-risk groups with significantly different survival rates. The risk score curves and Kaplan-Meier curves confirmed that the immune-related lncRNAs signature and radiomics signature were a novel independent prognostic factor in GBM patients. The GSEA suggested that the immune-related lncRNAs signature were involved in L1 cell adhesion molecular (L1CAM) interactions and the radiomics signature were involved signaling by Robo receptors. Besides, the two signatures was associated with the infiltration of immune cells. Furthermore, they were linked with the expression of critical immune genes and could predict immunotherapy's clinical response. Finally, the area under the curve (AUC) (0.890,0.887) and C-index (0.737,0.817) of the multifactors prognostic model were greater than those of the clinical prognostic model in both the training and validation sets, indicated significantly improved discrimination. CONCLUSIONS: We identified the immune-related lncRNAs signature and tradiomics signature that can predict the outcomes, immune cell infiltration, and immunotherapy response in patients with GBM.
Asunto(s)
Glioblastoma , ARN Largo no Codificante , Adulto , Humanos , Glioblastoma/diagnóstico por imagen , Glioblastoma/genética , ARN Largo no Codificante/genética , Radiómica , Pronóstico , Área Bajo la Curva , Microambiente Tumoral/genéticaRESUMEN
OBJECTIVE: The objective of this study was to evaluate the whole-brain pattern of oxygen extraction fraction (OEF), cerebral blood flow (CBF), and cerebral metabolic rate of oxygen consumption (CMRO2) perturbation in Alzheimer's disease (AD) and investigate the relationship between regional cerebral oxygen metabolism and global cognition. METHODS: Twenty-six AD patients and 25 age-matched healthy controls (HC) were prospectively recruited in this study. Mini-Mental State Examination (MMSE) was used to evaluate cognitive status. We applied the QQ-CCTV algorithm which combines quantitative susceptibility mapping and quantitative blood oxygen level-dependent models (QQ) for OEF calculation. CBF map was computed from arterial spin labeling and CMRO2 was generated based on Fick's principle. Whole-brain and regional OEF, CBF, and CMRO2 analyses were performed. The associations between these measures in substructures of deep brain gray matter and MMSE scores were assessed. RESULTS: Whole brain voxel-wise analysis showed that CBF and CMRO2 values significantly decreased in AD predominantly in the bilateral angular gyrus, precuneus gyrus and parieto-temporal regions. Regional analysis showed that CBF value decreased in the bilateral caudal hippocampus and left rostral hippocampus and CMRO2 value decreased in left caudal and rostral hippocampus in AD patients. Considering all subjects in the AD and HC groups combined, the mean CBF and CMRO2 values in the bilateral hippocampus positively correlated with the MMSE score. CONCLUSION: CMRO2 mapping with the QQ-CCTV method - which is readily available in MR systems for clinical practice - can be a potential biomarker for AD. In addition, CMRO2 in the hippocampus may be a useful tool for monitoring cognitive impairment.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/metabolismo , Oxígeno , Pruebas de Función Respiratoria , Consumo de Oxígeno/fisiología , Circulación Cerebrovascular/fisiología , Imagen por Resonancia MagnéticaRESUMEN
BACKGROUND: Histopathological evaluation is currently the gold standard for grading gliomas; however, this technique is invasive. OBJECTIVE: This study aimed to develop and validate a diagnostic prediction model for glioma by employing multiple machine learning algorithms to identify risk factors associated with high-grade glioma, facilitating the prediction of glioma grading. METHODS: Data from 1114 eligible glioma patients were obtained from The Cancer Genome Atlas (TCGA) database, which was divided into a training set (n= 781) and a test set (n= 333). Fifty machine learning algorithms were employed, and the optimal algorithm was selected to construct a prediction model. The performance of the machine learning prediction model was compared to the clinical prediction model in terms of discrimination, calibration, and clinical validity to assess the performance of the prediction model. RESULTS: The area under the curve (AUC) values of the machine learning prediction models (training set: 0.870 vs. 0.740, test set: 0.863 vs. 0.718) were significantly improved from the clinical prediction models. Furthermore, significant improvement in discrimination was observed for the Integrated Discrimination Improvement (IDI) (training set: 0.230, test set: 0.270) and Net Reclassification Index (NRI) (training set: 0.170, test set: 0.170) from the clinical prognostic model. Both models showed a high goodness of fit and an increased net benefit. CONCLUSION: A strong prediction accuracy model can be developed using machine learning algorithms to screen for high-grade glioma risk predictors, which can serve as a non-invasive prediction tool for preoperative diagnostic grading of glioma.
Asunto(s)
Neoplasias Encefálicas , Glioma , Aprendizaje Automático , Clasificación del Tumor , Humanos , Glioma/patología , Glioma/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/diagnóstico , Factores de Riesgo , Algoritmos , Adulto , Anciano , Área Bajo la CurvaRESUMEN
Hemifacial spasm (HFS) is a syndrome characterized by involuntary contractions of the facial muscles innervated by the ipsilateral facial nerve. Currently, microvascular decompression (MVD) is an effective treatment for HFS. Diffusion weighted imaging (DWI) is a non-invasive advanced magnetic resonance technique that allows us to reconstruct white matter (WM) virtually based on water diffusion direction. This enables us to model the human brain as a complex network using graph theory. In our study, we recruited 32 patients with HFS and 32 healthy controls to analyze and compare the topological organization of whole-brain white matter networks between the groups. We also explored the potential relationships between altered topological properties and clinical outcomes. Compared to the HC group, the white matter network was disrupted in both preoperative and postoperative groups of HFS patients, mainly located in the somatomotor network, limbic network, and default network (All P < 0.05, FDR corrected). There was no significant difference between the preoperative and postoperative groups (P > 0.05, FDR corrected). There was a correlation between the altered topological properties and clinical outcomes in the postoperative group of patients (All P < 0.05, FDR corrected). Our findings indicate that in HFS, the white matter structural network was disrupted before and after MVD, and that these alterations in the postoperative group were correlated with the clinical outcomes. White matter alteration here described may subserve as potential biomarkers for HFS and may help us identify patients with HFS who can benefit from MVD and thus can help us make a proper surgical patient selection.
Asunto(s)
Espasmo Hemifacial , Cirugía para Descompresión Microvascular , Sustancia Blanca , Humanos , Espasmo Hemifacial/diagnóstico por imagen , Espasmo Hemifacial/cirugía , Cirugía para Descompresión Microvascular/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Resultado del Tratamiento , Imagen de Difusión por Resonancia Magnética , Estudios RetrospectivosRESUMEN
Objectives: To develop a multi-omics prognostic model integrating transcriptomics and radiomics for predicting overall survival in patients with glioblastoma multiforme (GBM), and investigate the biological pathways of radiomics patterns. Materials and methods: Transcription profiles of GBM patients and normal controls were used to obtain differentially expressed mRNAs and long non-coding RNAs (lncRNAs). Radiomics features were extracted from magnetic resonance imaging (MRI). Least absolute shrinkage and selection operator (LASSO) Cox regression was employed to select survival-associated features for the construction of transcriptomics and radiomics signatures. Genes associated with GBM prognosis were identified through the analysis of lncRNA-mRNA co-expression networks and Weighted Gene Co-expression Network Analysis (WGCNA), and their biological pathways were investigated using Genomes enrichment analysis. Transcriptomics, radiomics, and clinical data were integrated to evaluate the multi-omics prognostic model's performance. Results: LASSO Cox regression yielded 21 survival-related features, including 19 transcriptomics features and 2 radiomics features. Based on transcriptomics and radiomics signature, GBM patients were classified as high-risk or low-risk. The genes obtained from the co-expression network screen were associated with microtubule binding, while those from the WGCNA screen were associated with growth factor receptor binding. In the training set, the AUC values for the multi-omics model and clinical model were 0.964 and 0.830, respectively, while in the validation set, they were 0.907 and 0.787. The multi-omics prognostic model outperformed the clinical prognostic model. Conclusions: The co-expression network and WGCNA methods revealed genes associated with multiple biological pathways in GBM. The multi-omics prognostic model demonstrated excellent performance and indicated significant potential for clinical application.
RESUMEN
Accurate segmentation of gastric tumors from computed tomography (CT) images provides useful image information for guiding the diagnosis and treatment of gastric cancer. Researchers typically collect datasets from multiple medical centers to increase sample size and representation, but this raises the issue of data heterogeneity. To this end, we propose a new cross-center 3D tumor segmentation method named unsupervised scale-aware and boundary-aware domain adaptive network (USBDAN), which includes a new 3D neural network that efficiently bridges an Anisotropic neural network and a Transformer (AsTr) for extracting multi-scale features from the CT images with anisotropic resolution, and a scale-aware and boundary-aware domain alignment (SaBaDA) module for adaptively aligning multi-scale features between two domains and enhancing tumor boundary drawing based on location-related information drawn from each sample across all domains. We evaluate the proposed method on an in-house CT image dataset collected from four medical centers. Our results demonstrate that the proposed method outperforms several state-of-the-art methods.
Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico por imagen , Anisotropía , Concienciación , Suministros de Energía Eléctrica , HospitalesRESUMEN
Introduction: Meige syndrome (MS) is an adult-onset segmental dystonia disease, mainly manifested as blepharospasm and involuntary movement caused by dystonic dysfunction of the oromandibular muscles. The changes of brain activity, perfusion and neurovascular coupling in patients with Meige syndrome are hitherto unknown. Methods: Twenty-five MS patients and thirty age- and sex-matched healthy controls (HC) were prospectively recruited in this study. All the participants underwent resting-state arterial spin labeling and blood oxygen level-dependent examinations on a 3.0 T MR scanner. The measurement of neurovascular coupling was calculated using cerebral blood flow (CBF)-functional connectivity strength (FCS) correlations across the voxels of whole gray matter. Also, voxel-wised analyses of CBF, FCS, and CBF/FCS ratio images between MS and HC were conducted. Additionally, CBF and FCS values were compared between these two groups in selected motion-related brain regions. Results: MS patients showed increased whole gray matter CBF-FCS coupling relative to HC (t = 2.262, p = 0.028). In addition, MS patients showed significantly increased CBF value in middle frontal gyrus and bilateral precentral gyrus. Conclusion: The abnormal elevated neurovascular coupling of MS may indicate a compensated blood perfusion in motor-related brain regions and reorganized the balance between neuronal activity and brain blood supply. Our results provide a new insight into the neural mechanism underlying MS from the perspective of neurovascular coupling and cerebral perfusion.
RESUMEN
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
RESUMEN
Objective: To compare the performance of radiomics-based machine learning survival models in predicting the prognosis of glioblastoma multiforme (GBM) patients. Methods: 131 GBM patients were included in our study. The traditional Cox proportional-hazards (CoxPH) model and four machine learning models (SurvivalTree, Random survival forest (RSF), DeepSurv, DeepHit) were constructed, and the performance of the five models was evaluated using the C-index. Results: After the screening, 1792 radiomics features were obtained. Seven radiomics features with the strongest relationship with prognosis were obtained following the application of the least absolute shrinkage and selection operator (LASSO) regression. The CoxPH model demonstrated that age (HR = 1.576, p = 0.037), Karnofsky performance status (KPS) score (HR = 1.890, p = 0.006), radiomics risk score (HR = 3.497, p = 0.001), and radiomics risk level (HR = 1.572, p = 0.043) were associated with poorer prognosis. The DeepSurv model performed the best among the five models, obtaining C-index of 0.882 and 0.732 for the training and test set, respectively. The performances of the other four models were lower: CoxPH (0.663 training set / 0.635 test set), SurvivalTree (0.702/0.655), RSF (0.735/0.667), DeepHit (0.608/0.560). Conclusion: This study confirmed the superior performance of deep learning algorithms based on radiomics relative to the traditional method in predicting the overall survival of GBM patients; specifically, the DeepSurv model showed the best predictive ability.
RESUMEN
OBJECTIVE: To perform quantitative analysis on the efficacy of using relative cerebral blood flow (rCBF) in arterial spin labeling (ASL), relative cerebral blood volume (rCBV) in dynamic magnetic sensitivity contrast-enhanced magnetic resonance imaging (DSC-MRI), and mean kurtosis (MK) in diffusion kurtosis imaging (DKI) to grade cerebral gliomas. METHODS: Literature regarding ASL, DSC-MRI, or DKI in cerebral gliomas grading in both English and Chinese were searched from PubMed, Embase, Web of Science, CBM, China National Knowledge Infrastructure (CNKI), and Wanfang Database as of 2019. A meta-analysis was performed to evaluate the efficacy of ASL, DSC-MRI, and DKI in the grading of cerebral gliomas. RESULT: A total of 54 articles (11 in Chinese and 43 in English) were included. Three quantitative parameters in the grading of cerebral gliomas, rCBF in ASL, rCBV in DSC-MRI, and MK in DKI had the pooled sensitivity of 0.88 [95% CI (0.83,0.92)], 0.92 [95% CI (0.83,0.96)], 0.88 [95% CI (0.82,0.92)], and the pooled specificity of 0.91 [95% CI (0.84,0.94)], 0.81 [95% CI (0.73,0.88)], 0.86 [95% CI (0.78,0.91)] respectively. The pooled area under the curve (AUC) were 0.95 [95% CI (0.93,0.97)], 0.91 [95% CI (0.89,0.94)], 0.93 [95% CI (0.91,0.95)] respectively. CONCLUSION: Quantitative parameters rCBF, rCBV and MK have high diagnostic accuracy for preoperative grading of cerebral gliomas.