Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748589

RESUMEN

The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a bacterial pathogen recognition hub that mediates resistance by guarding host kinases for modification by pathogen effectors. The pseudokinase HOPZ-ETI DEFICIENT 1 (ZED1) is the only known ZAR1-guarded protein that interacts directly with a pathogen effector, HopZ1a, from the bacterial pathogen Pseudomonas syringae, making it a promising system for rational design of effector recognition for plant immunity. Here, we conducted an in-depth molecular analysis of ZED1. We generated a library of 164 random ZED1 mutants and identified 50 mutants that could not recognize the effector HopZ1a when transiently expressed in Nicotiana benthamiana. Based on our random mutants, we generated a library of 27 point mutants and found evidence of minor functional divergence between Arabidopsis (Arabidopsis thaliana) and N. benthamiana ZAR1 orthologs. We leveraged our point mutant library to identify regions in ZED1 critical for ZAR1 and HopZ1a interactions and identified two likely ZED1-HopZ1a binding conformations. We explored ZED1 nucleotide and cation binding activity and showed that ZED1 is a catalytically dead pseudokinase, functioning solely as an allosteric regulator upon effector recognition. We used our library of ZED1 point mutants to identify the ZED1 activation loop regions as the most likely cause of interspecies ZAR1-ZED1 incompatibility. Finally, we identified a mutation that abolished ZAR1-ZED1 interspecies incompatibility while retaining the ability to mediate HopZ1a recognition, which enabled recognition of HopZ1a through tomato (Solanum lycopersicum) ZAR1. This provides an example of expanded effector recognition through a ZAR1 ortholog from a non-model species.

2.
Mol Cell Proteomics ; 22(5): 100543, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37030595

RESUMEN

Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIß (CaMKIIß). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIß, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.


Asunto(s)
Muerte Celular , Neuronas , Sinapsis , Animales , Masculino , Ratones , Ratas , Calpaína/metabolismo , Células Cultivadas , Inhibidores de Cisteína Proteinasa/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Neuronas/fisiología , Neuroprotección , Proteoma/análisis , Ratas Wistar , Accidente Cerebrovascular/patología , Sinapsis/patología , Sinapsis/fisiología
3.
Immunity ; 39(3): 443-53, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-24012422

RESUMEN

Mixed lineage kinase domain-like (MLKL) is a component of the "necrosome," the multiprotein complex that triggers tumor necrosis factor (TNF)-induced cell death by necroptosis. To define the specific role and molecular mechanism of MLKL action, we generated MLKL-deficient mice and solved the crystal structure of MLKL. Although MLKL-deficient mice were viable and displayed no hematopoietic anomalies or other obvious pathology, cells derived from these animals were resistant to TNF-induced necroptosis unless MLKL expression was restored. Structurally, MLKL comprises a four-helical bundle tethered to the pseudokinase domain, which contains an unusual pseudoactive site. Although the pseudokinase domain binds ATP, it is catalytically inactive and its essential nonenzymatic role in necroptotic signaling is induced by receptor-interacting serine-threonine kinase 3 (RIPK3)-mediated phosphorylation. Structure-guided mutation of the MLKL pseudoactive site resulted in constitutive, RIPK3-independent necroptosis, demonstrating that modification of MLKL is essential for propagation of the necroptosis pathway downstream of RIPK3.


Asunto(s)
Apoptosis , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factores de Necrosis Tumoral/metabolismo , Animales , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis , Fosfoproteínas Fosfatasas , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/genética , Transducción de Señal
4.
EMBO Rep ; 21(11): e50400, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-32954645

RESUMEN

Signaling via the intracellular pathogen receptors nucleotide-binding oligomerization domain-containing proteins NOD1 and NOD2 requires receptor interacting kinase 2 (RIPK2), an adaptor kinase that can be targeted for the treatment of various inflammatory diseases. However, the molecular mechanisms of how RIPK2 contributes to NOD signaling are not completely understood. We generated FLAG-tagged RIPK2 knock-in mice using CRISPR/Cas9 technology to study NOD signaling mechanisms at the endogenous level. Using cells from these mice, we were able to generate a detailed map of post-translational modifications on RIPK2. Similar to other reports, we did not detect ubiquitination of RIPK2 lysine 209 during NOD2 signaling. However, using site-directed mutagenesis we identified a new regulatory region on RIPK2, which dictates the crucial interaction with the E3 ligase XIAP and downstream signaling outcomes.


Asunto(s)
Proteína Adaptadora de Señalización NOD2 , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Animales , Ratones , Proteína Adaptadora de Señalización NOD2/genética , Proteína Adaptadora de Señalización NOD2/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Transducción de Señal , Ubiquitinación
5.
Biochem J ; 478(17): 3351-3371, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34431498

RESUMEN

EphB6 and EphA10 are two poorly characterised pseudokinase members of the Eph receptor family, which collectively serves as mediators of contact-dependent cell-cell communication to transmit extracellular cues into intracellular signals. As per their active counterparts, EphB6 and EphA10 deregulation is strongly linked to proliferative diseases. However, unlike active Eph receptors, whose catalytic activities are thought to initiate an intracellular signalling cascade, EphB6 and EphA10 are classified as catalytically dead, raising the question of how non-catalytic functions contribute to Eph receptor signalling homeostasis. In this study, we have characterised the biochemical properties and topology of the EphB6 and EphA10 intracellular regions comprising the juxtamembrane (JM) region, pseudokinase and SAM domains. Using small-angle X-ray scattering and cross-linking-mass spectrometry, we observed high flexibility within their intracellular regions in solution and a propensity for interaction between the component domains. We identified tyrosine residues in the JM region of EphB6 as EphB4 substrates, which can bind the SH2 domains of signalling effectors, including Abl, Src and Vav3, consistent with cellular roles in recruiting these proteins for downstream signalling. Furthermore, our finding that EphB6 and EphA10 can bind ATP and ATP-competitive small molecules raises the prospect that these pseudokinase domains could be pharmacologically targeted to counter oncogenic signalling.


Asunto(s)
Receptores de la Familia Eph/química , Receptores de la Familia Eph/metabolismo , Transducción de Señal/genética , Motivo alfa Estéril/genética , Dominios Homologos src/genética , Adenosina Trifosfato/metabolismo , Animales , Humanos , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Inhibidores de Proteínas Quinasas/metabolismo , Receptores de la Familia Eph/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera/citología , Tirosina/metabolismo
6.
Immunity ; 36(2): 239-50, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22342841

RESUMEN

Janus kinases (JAKs) are key effectors in controlling immune responses and maintaining hematopoiesis. SOCS3 (suppressor of cytokine signaling-3) is a major regulator of JAK signaling and here we investigate the molecular basis of its mechanism of action. We found that SOCS3 bound and directly inhibited the catalytic domains of JAK1, JAK2, and TYK2 but not JAK3 via an evolutionarily conserved motif unique to JAKs. Mutation of this motif led to the formation of an active kinase that could not be inhibited by SOCS3. Surprisingly, we found that SOCS3 simultaneously bound JAK and the cytokine receptor to which it is attached, revealing how specificity is generated in SOCS action and explaining why SOCS3 inhibits only a subset of cytokines. Importantly, SOCS3 inhibited JAKs via a noncompetitive mechanism, making it a template for the development of specific and effective inhibitors to treat JAK-based immune and proliferative diseases.


Asunto(s)
Citocinas/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Secuencia Conservada , Humanos , Interleucina-6/metabolismo , Quinasas Janus/antagonistas & inhibidores , Quinasas Janus/química , Quinasas Janus/genética , Quinasas Janus/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/genética
7.
J Biol Chem ; 293(25): 9841-9853, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29748383

RESUMEN

Structural maintenance of chromosomes flexible hinge domain-containing 1 (Smchd1) plays important roles in epigenetic silencing and normal mammalian development. Recently, heterozygous mutations in SMCHD1 have been reported in two disparate disorders: facioscapulohumeral muscular dystrophy type 2 (FSHD2) and Bosma arhinia microphthalmia syndrome (BAMS). FSHD2-associated mutations lead to loss of function; however, whether BAMS is associated with loss- or gain-of-function mutations in SMCHD1 is unclear. Here, we have assessed the effect of SMCHD1 missense mutations from FSHD2 and BAMS patients on ATP hydrolysis activity and protein conformation and the effect of BAMS mutations on craniofacial development in a Xenopus model. These data demonstrated that FSHD2 mutations only result in decreased ATP hydrolysis, whereas many BAMS mutations can result in elevated ATPase activity and decreased eye size in Xenopus Interestingly, a mutation reported in both an FSHD2 patient and a BAMS patient results in increased ATPase activity and a smaller Xenopus eye size. Mutations in the extended ATPase domain increased catalytic activity, suggesting critical regulatory intramolecular interactions and the possibility of targeting this region therapeutically to boost SMCHD1's activity to counter FSHD.


Asunto(s)
Adenosina Trifosfato/metabolismo , Atresia de las Coanas/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Oftalmopatías/patología , Microftalmía/genética , Distrofia Muscular Facioescapulohumeral/genética , Mutación Missense , Nariz/anomalías , Adenosina Trifosfatasas , Secuencia de Aminoácidos , Animales , Atresia de las Coanas/patología , Proteínas Cromosómicas no Histona/genética , Cristalografía por Rayos X , Oftalmopatías/genética , Oftalmopatías/metabolismo , Humanos , Ratones , Microftalmía/patología , Distrofia Muscular Facioescapulohumeral/patología , Nariz/patología , Conformación Proteica , Dominios Proteicos , Homología de Secuencia , Xenopus laevis
8.
Immunity ; 31(1): 47-59, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19592275

RESUMEN

The semi-invariant natural killer T cell receptor (NKT TCR) recognizes CD1d-lipid antigens. Although the TCR alpha chain is typically invariant, the beta chain expression is more diverse, where three V beta chains are commonly expressed in mice. We report the structures of V alpha 14-V beta 8.2 and V alpha 14-V beta 7 NKT TCRs in complex with CD1d-alpha-galactosylceramide (alpha-GalCer) and the 2.5 A structure of the human NKT TCR-CD1d-alpha-GalCer complex. Both V beta 8.2 and V beta 7 NKT TCRs and the human NKT TCR ligated CD1d-alpha-GalCer in a similar manner, highlighting the evolutionarily conserved interaction. However, differences within the V beta domains of the V beta 8.2 and V beta 7 NKT TCR-CD1d complexes resulted in altered TCR beta-CD1d-mediated contacts and modulated recognition mediated by the invariant alpha chain. Mutagenesis studies revealed the differing contributions of V beta 8.2 and V beta 7 residues within the CDR2 beta loop in mediating contacts with CD1d. Collectively we provide a structural basis for the differential NKT TCR V beta usage in NKT cells.


Asunto(s)
Antígenos CD1d/inmunología , Galactosilceramidas/inmunología , Células T Asesinas Naturales/inmunología , Fragmentos de Péptidos/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Animales , Antígenos CD1d/química , Clonación Molecular , Cristalización , Galactosilceramidas/química , Humanos , Ratones , Mutagénesis , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Conformación Proteica , Receptores de Antígenos de Linfocitos T alfa-beta/química , Receptores de Antígenos de Linfocitos T alfa-beta/genética
9.
Proc Natl Acad Sci U S A ; 112(27): E3535-44, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26091879

RESUMEN

Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic repressor with described roles in X inactivation and genomic imprinting, but Smchd1 is also critically involved in the pathogenesis of facioscapulohumeral dystrophy. The underlying molecular mechanism by which Smchd1 functions in these instances remains unknown. Our genome-wide transcriptional and epigenetic analyses show that Smchd1 binds cis-regulatory elements, many of which coincide with CCCTC-binding factor (Ctcf) binding sites, for example, the clustered protocadherin (Pcdh) genes, where we show Smchd1 and Ctcf act in opposing ways. We provide biochemical and biophysical evidence that Smchd1-chromatin interactions are established through the homodimeric hinge domain of Smchd1 and, intriguingly, that the hinge domain also has the capacity to bind DNA and RNA. Our results suggest Smchd1 imparts epigenetic regulation via physical association with chromatin, which may antagonize Ctcf-facilitated chromatin interactions, resulting in coordinated transcriptional control.


Asunto(s)
Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética , Genoma , Animales , Sitios de Unión/genética , Western Blotting , Encéfalo/citología , Encéfalo/embriología , Encéfalo/metabolismo , Factor de Unión a CCCTC , Células Cultivadas , Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Impresión Genómica , Histonas/metabolismo , Masculino , Metilación , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/metabolismo , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transcriptoma/genética
10.
J Biol Chem ; 291(41): 21571-21583, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27531744

RESUMEN

SgK269/PEAK1 is a pseudokinase and scaffolding protein that plays a critical role in regulating growth factor receptor signal output and is implicated in the progression of several cancers, including those of the breast, colon, and pancreas. SgK269 is structurally related to SgK223, a human pseudokinase that also functions as a scaffold but recruits a distinct repertoire of signaling proteins compared with SgK269. Structural similarities between SgK269 and SgK223 include a predicted α-helical region (designated CH) immediately preceding the conserved C-terminal pseudokinase (PK) domain. Structure-function analyses of SgK269 in MCF-10A mammary epithelial cells demonstrated a critical role for the CH and PK regions in promoting cell migration and Stat3 activation. Characterization of the SgK269 "interactome" by mass spectrometry-based proteomics identified SgK223 as a novel binding partner, and association of SgK269 with SgK223 in cells was dependent on the presence of the CH and PK domains of both pseudokinases. Homotypic association of SgK269 and SgK223 was also demonstrated and exhibited the same structural requirements. Further analysis using pulldowns and size-exclusion chromatography underscored the critical role of the CH region in SgK269/SgK223 association. Importantly, although SgK269 bridged SgK223 to Grb2, it was unable to activate Stat3 or efficiently enhance migration in SgK223 knock-out cells generated by CRISPR/Cas9. These results reveal previously unrecognized interplay between two oncogenic scaffolds and demonstrate a novel signaling mechanism for pseudokinases whereby homotypic and heterotypic association is used to assemble scaffolding complexes with distinct binding properties and hence qualitatively regulate signal output.


Asunto(s)
Proteínas Portadoras/metabolismo , Movimiento Celular/fisiología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal/fisiología , Animales , Proteínas Portadoras/genética , Línea Celular , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Dominios Proteicos , Proteínas Tirosina Quinasas/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
11.
Biochem J ; 473(12): 1733-44, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27059856

RESUMEN

Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic regulator that plays critical roles in gene regulation during development. Mutations in SMCHD1 were recently implicated in the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD), although the mechanistic basis remains of outstanding interest. We have previously shown that Smchd1 associates with chromatin via its homodimeric C-terminal hinge domain, yet little is known about the function of the putative GHKL (gyrase, Hsp90, histidine kinase, MutL)-type ATPase domain at its N-terminus. To formally assess the structure and function of Smchd1's ATPase domain, we have generated recombinant proteins encompassing the predicted ATPase domain and the adjacent region. Here, we show that the Smchd1 N-terminal region exists as a monomer and adopts a conformation resembling that of monomeric full-length heat shock protein 90 (Hsp90) protein in solution, even though the two proteins share only ∼8% overall sequence identity. Despite being monomeric, the N-terminal region of Smchd1 exhibits ATPase activity, which can be antagonized by the reaction product, ADP, or the Hsp90 inhibitor, radicicol, at a nanomolar concentration. Interestingly, introduction of an analogous mutation to that identified in SMCHD1 of an FSHD patient compromised protein stability, suggesting a possible molecular basis for loss of protein function and pathogenesis. Together, these results reveal important structure-function characteristics of Smchd1 that may underpin its mechanistic action at the chromatin level.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Macrólidos/farmacología , Ratones , Datos de Secuencia Molecular , Dominios Proteicos/genética , Dominios Proteicos/fisiología , Alineación de Secuencia
12.
Proc Natl Acad Sci U S A ; 111(42): 15072-7, 2014 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288762

RESUMEN

Necroptosis is considered to be complementary to the classical caspase-dependent programmed cell death pathway, apoptosis. The pseudokinase Mixed Lineage Kinase Domain-Like (MLKL) is an essential effector protein in the necroptotic cell death pathway downstream of the protein kinase Receptor Interacting Protein Kinase-3 (RIPK3). How MLKL causes cell death is unclear, however RIPK3-mediated phosphorylation of the activation loop in MLKL trips a molecular switch to induce necroptotic cell death. Here, we show that the MLKL pseudokinase domain acts as a latch to restrain the N-terminal four-helix bundle (4HB) domain and that unleashing this domain results in formation of a high-molecular-weight, membrane-localized complex and cell death. Using alanine-scanning mutagenesis, we identified two clusters of residues on opposing faces of the 4HB domain that were required for the 4HB domain to kill cells. The integrity of one cluster was essential for membrane localization, whereas MLKL mutations in the other cluster did not prevent membrane translocation but prevented killing; this demonstrates that membrane localization is necessary, but insufficient, to induce cell death. Finally, we identified a small molecule that binds the nucleotide binding site within the MLKL pseudokinase domain and retards MLKL translocation to membranes, thereby preventing necroptosis. This inhibitor provides a novel tool to investigate necroptosis and demonstrates the feasibility of using small molecules to target the nucleotide binding site of pseudokinases to modulate signal transduction.


Asunto(s)
Apoptosis , Necrosis , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Membrana Celular/metabolismo , Activación Enzimática , Concentración 50 Inhibidora , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Mutación , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
13.
J Immunol ; 193(11): 5402-13, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25355921

RESUMEN

Mutations in T cell epitopes are implicated in hepatitis C virus (HCV) persistence and can impinge on vaccine development. We recently demonstrated a narrow bias in the human TCR repertoire targeted at an immunodominant, but highly mutable, HLA-B*0801-restricted epitope ((1395)HSKKKCDEL(1403) [HSK]). To investigate if the narrow TCR repertoire facilitates CTL escape, structural and biophysical studies were undertaken, alongside comprehensive functional analysis of T cells targeted at the natural variants of HLA-B*0801-HSK in different HCV genotypes and quasispecies. Interestingly, within the TCR-HLA-B*0801-HSK complex, the TCR contacts all available surface-exposed residues of the HSK determinant. This broad epitope coverage facilitates cross-genotypic reactivity and recognition of common mutations reported in HCV quasispecies, albeit to a varying degree. Certain mutations did abrogate T cell reactivity; however, natural variants comprising these mutations are reportedly rare and transient in nature, presumably due to fitness costs. Overall, despite a narrow bias, the TCR accommodated frequent mutations by acting like a blanket over the hypervariable epitope, thereby providing effective viral immunity. Our findings simultaneously advance the understanding of anti-HCV immunity and indicate the potential for cross-genotype HCV vaccines.


Asunto(s)
Variación Antigénica , Linfocitos T CD8-positivos/inmunología , Hepacivirus/inmunología , Hepatitis C/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Variación Antigénica/genética , Linfocitos T CD8-positivos/virología , Células Cultivadas , Cristalografía por Rayos X , Citotoxicidad Inmunológica/genética , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/metabolismo , Antígeno HLA-B8/metabolismo , Humanos , Epítopos Inmunodominantes/genética , Epítopos Inmunodominantes/metabolismo , Mutación/genética , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica/genética , Conformación Proteica , Ingeniería de Proteínas , Estabilidad Proteica , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
14.
Biochem J ; 462(1): 1-13, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25057888

RESUMEN

The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domain's catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors.


Asunto(s)
Janus Quinasa 1/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 3/metabolismo , TYK2 Quinasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Activación Enzimática , Humanos , Síndromes de Inmunodeficiencia/genética , Péptidos y Proteínas de Señalización Intracelular , Antígenos Comunes de Leucocito/metabolismo , Trastornos Mieloproliferativos/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Estructura Terciaria de Proteína/fisiología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas/metabolismo , Receptores de Citocinas/fisiología , Transducción de Señal , Dominios Homologos src
15.
Biochem J ; 457(3): 369-77, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24219132

RESUMEN

The pseudokinase MLKL (mixed lineage kinase domain-like) was identified recently as an essential checkpoint in the programmed necrosis or 'necroptosis' cell death pathway. In the present study, we report the crystal structure of the human MLKL pseudokinase domain at 1.7 Å (1 Å=0.1 nm) resolution and probe its nucleotide-binding mechanism by performing structure-based mutagenesis. By comparing the structures and nucleotide-binding determinants of human and mouse MLKL orthologues, the present study provides insights into the evolution of nucleotide-binding mechanisms among pseudokinases and their mechanistic divergence from conventional catalytically active protein kinases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Evolución Molecular , Modelos Moleculares , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Bases de Datos de Proteínas , Humanos , Lisina/química , Ratones , Conformación Molecular , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ingeniería de Proteínas , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Quinasas/aislamiento & purificación , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Alineación de Secuencia
16.
Biochem J ; 458(2): 395-405, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24354892

RESUMEN

JAK2 (Janus kinase 2) initiates the intracellular signalling cascade downstream of cell surface receptor activation by cognate haemopoietic cytokines, including erythropoietin and thrombopoietin. The pseudokinase domain (JH2) of JAK2 negatively regulates the catalytic activity of the adjacent tyrosine kinase domain (JH1) and mutations within the pseudokinase domain underlie human myeloproliferative neoplasms, including polycythaemia vera and essential thrombocytosis. To date, the mechanism of JH2-mediated inhibition of JH1 kinase activation as well as the susceptibility of pathological mutant JAK2 to inhibition by the physiological negative regulator SOCS3 (suppressor of cytokine signalling 3) have remained unclear. In the present study, using recombinant purified JAK2JH1-JH2 proteins, we demonstrate that, when activated, wild-type and myeloproliferative neoplasm-associated mutants of JAK2 exhibit comparable enzymatic activity and inhibition by SOCS3 in in vitro kinase assays. SAXS (small-angle X-ray scattering) showed that JAK2JH1-JH2 exists in an elongated configuration in solution with no evidence for interaction between JH1 and JH2 domains in cis. Collectively, these data are consistent with a model in which JAK2's pseudokinase domain does not influence the activity of JAK2 once it has been activated. Our data indicate that, in the absence of the N-terminal FERM domain and thus cytokine receptor association, the wild-type and pathological mutants of JAK2 are enzymatically equivalent and equally susceptible to inhibition by SOCS3.


Asunto(s)
Neoplasias Hematológicas/prevención & control , Janus Quinasa 2/antagonistas & inhibidores , Mutación Missense/genética , Trastornos Mieloproliferativos/prevención & control , Proteínas Supresoras de la Señalización de Citocinas/fisiología , Dominio Catalítico/genética , Predisposición Genética a la Enfermedad , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Humanos , Janus Quinasa 2/química , Janus Quinasa 2/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Estructura Secundaria de Proteína/genética , Proteínas Recombinantes/genética , Dispersión del Ángulo Pequeño , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética , Difracción de Rayos X
17.
Biochem J ; 457(2): 323-34, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24107129

RESUMEN

Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.


Asunto(s)
Janus Quinasa 2/química , Janus Quinasa 2/clasificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Receptor ErbB-3/química , Receptor ErbB-3/clasificación , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Insectos , Janus Quinasa 2/genética , Datos de Secuencia Molecular , Unión Proteica/fisiología , Receptor ErbB-3/genética
18.
Commun Biol ; 7(1): 461, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627519

RESUMEN

EphB6 is an understudied ephrin receptor tyrosine pseudokinase that is downregulated in multiple types of metastatic cancers. Unlike its kinase-active counterparts which autophosphorylate and transmit signals upon intercellular interaction, little is known about how EphB6 functions in the absence of intrinsic kinase activity. Here, we unveil a molecular mechanism of cell-cell interaction driven by EphB6. We identify ephrinB1 as a cognate ligand of EphB6 and show that in trans interaction of EphB6 with ephrinB1 on neighboring cells leads to the formation of large co-clusters at the plasma membrane. These co-clusters exhibit a decreased propensity towards endocytosis, suggesting a unique characteristic for this type of cell-cell interaction. Using lattice light-sheet microscopy, 3D structured illumination microscopy and cryo-electron tomography techniques, we show that co-clustering of EphB6 and ephrinB1 promotes the formation of double-membrane tubular structures between cells. Importantly, we also demonstrate that these intercellular structures stabilize cell-cell adhesion, leading to a reduction in the invasive behavior of cancer cells. Our findings rationalize a role for EphB6 pseudokinase as a tumor suppressor when interacting with its ligands in trans.


Asunto(s)
Fosforilación , Invasividad Neoplásica
19.
Biochem Soc Trans ; 41(4): 975-80, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863166

RESUMEN

Approximately 10% of the human kinome has been classified as pseudokinases due to the absence of one or more of three motifs known to play key roles in the catalytic activities of protein kinases. Structural and functional studies are now emerging, reclassifying this 'dead' kinase family as essential signalling molecules that act as crucial modulators of signal transduction. This raises the prospect that pseudokinases may well represent an as-yet-unexplored class of drug targets. However, the extent to which nucleotide binding and catalytic activity contribute to the biological functions of pseudokinases remains an area of great controversy. In the present review, we discuss the advantages and disadvantages of the different methods employed to characterize the nucleotide-binding properties and activity of pseudokinases.


Asunto(s)
Nucleótidos/metabolismo , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Biocatálisis , Cromatografía de Afinidad , Cristalografía por Rayos X , Humanos , Resonancia Magnética Nuclear Biomolecular , Unión Proteica
20.
Biochem Soc Trans ; 41(4): 1042-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863176

RESUMEN

JAKs (Janus kinases) are essential mediators of almost all biological signalling events initiated by haemopoietic and immune cytokines. However, aberrant and/or prolonged JAK-induced signalling is detrimental and can give rise to a number of inflammatory and proliferative pathologies. For this reason, the tyrosine kinase activity of the JAKs is carefully regulated at a number of different levels. Primarily, this is achieved by: (i) ensuring that the catalytic domain is 'switched off' under basal conditions, and (ii) inhibiting the activity of JAK after it has been switched on. Whereas the first mode of inhibition is mediated by JAK's own pseudokinase domain as well as the action of phosphatases, the second is achieved by the action of the SOCS (suppressor of cytokine signalling) proteins, negative-feedback inhibitors of JAK-mediated signalling. The present review focuses on the mode of action of SOCS1 and SOCS3, the two most potent JAK inhibitors.


Asunto(s)
Quinasas Janus/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Quinasas Janus/química , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA