Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Radiology ; 302(3): 605-612, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34874202

RESUMEN

Background Histopathologic studies reported that cochlear implantation, a well-established means to treat severe-to-profound sensorineural hearing loss, may induce inflammation, fibrosis, and new bone formation (NBF) with possible impact on loss of residual hearing and hearing outcome. Purpose To assess NBF in vivo after cochlear implantation with ultra-high-spatial-resolution (UHSR) CT and its implication on long-term residual hearing outcome. Materials and Methods In a secondary analysis of a prospective single-center cross-sectional study, conducted between December 2016 and January 2018, patients with at least 1 year of cochlear implantation experience underwent temporal bone UHSR CT and residual hearing assessment. Two observers evaluated the presence and location of NBF independently, and tetrachoric correlations were used to assess interobserver reliability. In addition, the scalar location of each electrode was assessed. After consensus agreement, participants were classified into two groups: those with NBF (n = 83) and those without NBF (n = 40). The association between NBF and clinical parameters, including electrode design, surgical approach, and long-term residual hearing loss, was tested using the χ2 and Student t tests. Results A total of 123 participants (mean age ± standard deviation, 63 years ± 13; 63 women) were enrolled. NBF was found in 83 of the 123 participants (68%) at 466 of 2706 electrode contacts (17%). Most NBFs (428 of 466, 92%) were found around the 10 most basal contacts, with an interobserver agreement of 86% (2297 of 2683 contacts). Associations between electrode types and surgical approaches were significant (58 of 79 participants with NBF and a precurved electrode vs 24 of 43 with NBF and a straight electrode, P = .04; 64 of 88 participants with NBF and a cochleostomy approach vs 18 of 34 with NBF and a round window approach, P = .03). NBF was least often seen in full scala tympani insertions, but there was no significant association between scalar position and NBF (P = .15). Long-term residual hearing loss was significantly larger in the group with NBF compared with the group without NBF (mean, 22.9 dB ± 14 vs 8.6 dB ± 18, respectively; P = .04). Conclusion In vivo detection of new bone formation (NBF) after cochlear implantation is possible by using ultra-high-spatial-resolution CT. Most cochlear implant recipients develop NBF, predominately located at the base of the cochlea. NBF adversely affects long-term residual hearing preservation. © RSNA, 2021 An earlier incorrect version appeared online. This article was corrected on December 8, 2021.


Asunto(s)
Implantación Coclear , Osteogénesis , Hueso Temporal/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Estudios Transversales , Femenino , Pruebas Auditivas , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos
2.
Ann Neurol ; 89(4): 769-779, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33459417

RESUMEN

OBJECTIVE: Progressive multifocal leukoencephalopathy (PML) is still burdened by high mortality in a subset of patients, such as those affected by hematological malignancies. The aim of this study was to analyze the safety and carry out preliminary evaluation of the efficacy of polyomavirus JC (JCPyV)-specific T cell therapy in a cohort of hematological patients with PML. METHODS: Between 2014 and 2019, 9 patients with a diagnosis of "definite PML" according to the 2013 consensus who were showing progressive clinical deterioration received JCPyV-specific T cells. Cell lines were expanded from autologous or allogenic peripheral blood mononuclear cells by stimulation with JCPyV antigen-derived peptides. RESULTS: None of the patients experienced treatment-related adverse events. In the evaluable patients, an increase in the frequency of circulating JCPyV-specific lymphocytes was observed, with a decrease or clearance of JCPyV viral load in cerebrospinal fluid. In responsive patients, transient appearance of punctate areas of contrast enhancement within, or close to, PML lesions was observed, which was interpreted as a sign of immune control and which regressed spontaneously without the need for steroid treatment. Six of 9 patients achieved PML control, with 5 alive and in good clinical condition at their last follow-up. INTERPRETATION: Among other novel treatments, T cell therapy is emerging as a viable treatment option in patients with PML, particularly for those not amenable to restoration of specific immunity. Neurologists should be encouraged to refer PML patients to specialized centers to allow access to this treatment strategy. ANN NEUROL 2021;89:769-779.


Asunto(s)
Traslado Adoptivo/métodos , Virus JC , Leucoencefalopatía Multifocal Progresiva/terapia , Linfocitos T , Adolescente , Traslado Adoptivo/efectos adversos , Anciano , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Leucoencefalopatía Multifocal Progresiva/líquido cefalorraquídeo , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Carga Viral
4.
Insights Imaging ; 10(1): 94, 2019 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-31549243

RESUMEN

Nowadays, hadrontherapy is increasingly used for the treatment of various tumors, in particular of those resistant to conventional radiotherapy. Proton and carbon ions are characterized by physical and biological features that allow a high radiation dose to tumors, minimizing irradiation to adjacent normal tissues. For this reason, radioresistant tumors and tumors located near highly radiosensitive critical organs, such as skull base tumors, represent the best target for this kind of therapy. However, also hadrontherapy can be associated with radiation adverse effects, generally referred as acute, early-delayed and late-delayed. Among late-delayed effects, the most severe form of injury is radiation necrosis. There are various underlying mechanisms involved in the development of radiation necrosis, as well as different clinical presentations requiring specific treatments. In most cases, radiation necrosis presents as a single focal lesion, but it can be multifocal and involve a single or multiple lobes simulating brain metastasis, or it can also involve both cerebral hemispheres. In every case, radiation necrosis results always related to the extension of radiation delivery field. Multiple MRI techniques, including diffusion, perfusion imaging, and spectroscopy, are important tools for the radiologist to formulate the correct diagnosis. The aim of this paper is to illustrate the possible different radiologic patterns of radiation necrosis that can be observed in different MRI techniques in patients treated with hadrontherapy for tumors involving the skull base. The images of exemplary cases of radiation necrosis are also presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA