Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur J Haematol ; 112(6): 860-869, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294126

RESUMEN

Myelodysplastic syndromes (MDS) encompass a heterogeneous set of acquired bone marrow neoplastic disorders characterized by ineffective hematopoiesis within one or more bone marrow lineages. Nearly half of MDS patients carry cytogenetic alterations, with del(5q) being the most prevalent. Since its first description, del(5q) was consistently correlated with a typical clinical phenotype marked by anemia, thrombocytosis, and a low risk of evolving into acute leukemia. Presently, the World Health Organization (WHO) classification of myeloid neoplasms recognizes a specific subtype of MDS known as "myelodysplastic neoplasm with low blast and isolated del(5q)" identified by the sole presence of 5q deletion or in combination with one other abnormality excluding -7/del(7q). Several studies have sought to unravel the biological processes triggered by del(5q) in the development of MDS, revealing the involvement of various genes localized in specific regions of chromosome 5 referred to as common deleted regions (CDR). This intricate biological landscape makes the MDS cells with del(5q) exceptionally sensitive to lenalidomide. Several studies have confirmed the efficacy of lenalidomide in this context. Regrettably, the response to lenalidomide is not conclusive, prompting ongoing research into biological mechanisms that drive patients toward leukemia and strategies to circumvent lenalidomide resistance and disease progression.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 5 , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/terapia , Síndromes Mielodisplásicos/diagnóstico , Síndromes Mielodisplásicos/etiología , Cromosomas Humanos Par 5/genética , Lenalidomida/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
2.
Expert Opin Pharmacother ; 25(4): 421-434, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38503547

RESUMEN

INTRODUCTION: Selinexor, an XPO1 inhibitor, has emerged as a promising therapeutic option in the challenging landscape of relapsed/refractory multiple myeloma (RRMM). AREAS COVERED: This article provides a review of selinexor, with a focus on available clinical studies involving MM patients and its safety profile. Clinical trials, such as STORM and BOSTON, have demonstrated its efficacy, particularly in combination regimens, showcasing notable overall response rates (ORR) and prolonged median progressionfree survival (mPFS). Selinexor's versatility is evident across various combinations, including carfilzomibdexamethasone (XKd), lenalidomidedexamethasone (XRd), and pomalidomidedexamethasone (XPd), with efficacy observed even in tripleclass refractory and highrisk patient populations. However, challenges, including resistance mechanisms and adverse events, necessitate careful management. Realworld evidence also underscores selinexor's effectiveness in RRMM, though dose adjustments and supportive measures remain crucial. Ongoing trials are exploring selinexor in diverse combinations and settings, including pomalidomidenaïve patients and postautologous stem cell transplant (ASCT) maintenance. EXPERT OPINION: The evolving landscape of selinexor's role in the sequencing of treatment for RRMM, its potential in highrisk patients, including those with extramedullary disease, as revealed in the most recent international meetings, and ongoing investigations signal a dynamic era in myeloma therapeutics. Selinexor emerges as a pivotal component in multidrug strategies and innovative combinations.


Asunto(s)
Hidrazinas , Mieloma Múltiple , Triazoles , Mieloma Múltiple/tratamiento farmacológico , Humanos , Hidrazinas/uso terapéutico , Hidrazinas/efectos adversos , Triazoles/uso terapéutico , Triazoles/efectos adversos , Carioferinas/antagonistas & inhibidores , Proteína Exportina 1 , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Supervivencia sin Progresión
3.
Expert Opin Pharmacother ; 25(5): 521-528, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623844

RESUMEN

INTRODUCTION: Myelofibrosis (MF) is a hematologic disease characterized by bone marrow fibrosis, cytopenias, splenomegaly, and constitutional symptoms. Recent years have seen the emergence of novel therapeutic agents, notably ruxolitinib and fedratinib, which target the Janus kinases (JAK) pathway. However, their myelosuppressive effect coupled with the persistence, and even worsening anemia remains a significant challenge, leading usually to treatment discontinuation. AREAS COVERED: This review focuses on Momelotinib (MMB), a unique JAK inhibitor that has shown promise in MF treatment, particularly in improving anemia. MMB inhibits type 1 kinase activin A receptor or activin receptor-like kinase-2 (ACVR1/ALK2), with consequent rebalancing of the SMAD pathways and reduced transcription of hepcidin. Moreover, it seems that MMB could reduce the serum levels of several inflammatory cytokines responsible for anemia. Clinical trials have demonstrated MMB's efficacy in reducing spleen size, alleviating symptoms, and improving anemia, with a favorable safety profile compared to other JAK inhibitors, both in treatment-naïve and in pre-treated patients. EXPERT OPINION: Due to its mechanism of action, MMB represents a valuable therapeutic option in MF, addressing the clinical challenge of anemia and potentially improving outcomes for patients with hematologic malignancies. Ongoing research explores MMB's potential in acute myeloid leukemia and combination therapies.


Asunto(s)
Mielofibrosis Primaria , Pirimidinas , Humanos , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/metabolismo , Pirimidinas/uso terapéutico , Pirimidinas/farmacología , Animales , Benzamidas/uso terapéutico , Benzamidas/farmacología , Inhibidores de las Cinasas Janus/uso terapéutico , Inhibidores de las Cinasas Janus/farmacología , Anemia/tratamiento farmacológico , Hidrocarburos Aromáticos con Puentes
4.
Expert Rev Hematol ; 17(6): 241-253, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38748404

RESUMEN

INTRODUCTION: Acute myeloid leukemia (AML) encompasses a heterogeneous group of aggressive myeloid malignancies, where FMS-like tyrosine kinase 3 (FLT3) mutations are prevalent, accounting for approximately 25-30% of adult patients. The presence of this mutation is related to a dismal prognosis and high relapse rates. In the lasts years many FLT3 inhibitors have been developed. AREAS COVERED: This review provides a comprehensive overview of FLT3mut AML, summarizing the state of art of current treatment and available data about combination strategies including an FLT3 inhibitor. EXPERT OPINION: In addition, the review discusses the emergence of drug resistance and the need for a nuanced approaches in treating patients who are ineligible for or resistant to intensive chemotherapy. Specifically, it explores the historical context of FLT3 inhibitors (FLT3Is) and their impact on treatment outcomes, emphasizing the pivotal role of midostaurin, as well as gilteritinib and quizartinib, and providing detailed insights into ongoing trials exploring the safety and efficacy of novel triplet combinations involving FLT3Is in different AML settings.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Leucemia Mieloide Aguda , Mutación , Inhibidores de Proteínas Quinasas , Tirosina Quinasa 3 Similar a fms , Humanos , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos , Estaurosporina/análogos & derivados , Estaurosporina/uso terapéutico , Resultado del Tratamiento , Compuestos de Anilina , Pirazinas
5.
Expert Opin Investig Drugs ; : 1-10, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39096094

RESUMEN

INTRODUCTION: CXCR4/CXCL12 axis regulates cell proliferation, survival, and differentiation, as well as the homing and mobilization of hematopoietic stem cells (HSCs) from bone marrow niches to the peripheral blood. Furthermore, CXCR4 and CXCL12 are key mediators of cross-talk between hematological malignancies and their microenvironments. CXCR4 overexpression drives disease progression, boosts tumor cell survival, and promotes chemoresistance, leading to poor prognosis. AREAS COVERED: In light of these discoveries, scientific investigations, and clinical trials have underscored the therapeutic promise found in small-molecule antagonists like plerixafor, peptides/peptidomimetics, such as BKT140, monoclonal antibodies like PF-06747143 and ulocuplumab, as well as microRNAs. Their efficacy is evident in reducing tumor burden, inducing apoptosis and sensitizing malignant cells to conventional chemotherapies. This overview delves into the pathogenic role of the CXC4/CXCL12 axis in hematological neoplasms and examines the clinical application of key CXCR4 antagonists. EXPERT OPINION: The information collectively emphasizes the potential of CXCR4 antagonists as a therapeutic strategy for hematologic malignancies, showcasing advancements in preclinical and clinical studies. As these therapeutic strategies progress through clinical trials, their potential to reshape the prognosis of hematologic malignancies will become increasingly apparent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA