Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Faraday Discuss ; 250(0): 43-59, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-37970875

RESUMEN

Aptamers that undergo large conformational rearrangements at the surface of electrolyte-gated field-effect transistor (EG-FETs)-based biosensors can overcome the Debye length limitation in physiological high ionic strength environments. For the sensitive detection of small molecules, carbon nanotubes (CNTs) that approach the dimensions of analytes of interest are promising channel materials for EG-FETs. However, functionalization of CNTs with bioreceptors using frequently reported surface modification strategies (e.g., π-π stacking), requires highly pristine CNTs deposited through methods that are incompatible with low-cost fabrication methods and flexible substrates. In this work, we explore alternative non-covalent surface chemistry to functionalize CNTs with aptamers. We harnessed the adhesive properties of poly-D-lysine (PDL), to coat the surface of CNTs and then grafted histamine-specific DNA aptamers electrostatically in close proximity to the CNT semiconducting channel. The layer-by-layer assembly was monitored by complementary techniques such as X-ray photoelectron spectroscopy, optical waveguide lightmode spectroscopy, and fluorescence microscopy. Surface characterization confirmed histamine aptamer integration into PDL-coated CNTs and revealed ∼5-fold higher aptamer surface coverage when using CNT networks with high surface areas. Specific aptamers assembled on EG-CNTFETs enabled histamine detection in undiluted high ionic strength solutions in the concentration range of 10 nM to 100 µM. Sequence specificity was demonstrated via parallel measurements with control EG-CNTFETs functionalized with scrambled DNA. Histamine aptamer-modified EG-CNTFETs showed high selectivity vs. histidine, the closest structural analog and precursor to histamine. Taken together, these results implied that target-specific aptamer conformational changes on CNTs facilitate signal transduction, which was corroborated by circular dichroism spectroscopy. Our work suggests that layer-by-layer polymer chemistry enables integration of structure-switching aptamers into flexible EG-CNTFETs for small-molecule biosensing.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Nanotubos de Carbono , Polilisina , Transistores Electrónicos , Histamina , Nanotubos de Carbono/química , Polímeros/química , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos
2.
Sensors (Basel) ; 23(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36679653

RESUMEN

Recent years have witnessed a growing interest in detectors capable of detecting single photons in the near-infrared (NIR), mainly due to the emergence of new applications such as light detection and ranging (LiDAR) for, e.g., autonomous driving. A silicon single-photon avalanche diode is surely one of the most interesting and available technologies, although it yields a low efficiency due to the low absorption coefficient of Si in the NIR. Here, we aim at overcoming this limitation through the integration of complementary metal-oxide-semiconductor (CMOS) -compatible nanostructures on silicon photodetectors. Specifically, we utilize silver grating arrays supporting surface plasmons polaritons (SPPs) to superficially confine the incoming NIR photons and therefore to increase the probability of photons generating an electron-hole pair. First, the plasmonic silver array is geometrically designed using time domain simulation software to achieve maximum detector performance at 950 nm. Then, a plasmonic silver array characterized by a pitch of 535 nm, a dot width of 428 nm, and a metal thickness of 110 nm is integrated by means of the focused ion beam technique on the detector. Finally, the integrated detector is electro-optically characterized, demonstrating a QE of 13% at 950 nm, 2.2 times higher than the reference. This result suggests the realization of a silicon device capable of detecting single NIR photons, at a low cost and with compatibility with standard CMOS technology platforms.


Asunto(s)
Conducción de Automóvil , Nanoestructuras , Plata , Silicio , Simulación por Computador , Óxidos
3.
Sensors (Basel) ; 22(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684798

RESUMEN

The precise monitoring of environmental contaminants and agricultural plant stress factors, respectively responsible for damages to our ecosystems and crop losses, has nowadays become a topic of uttermost importance. This is also highlighted by the recent introduction of the so-called "Sustainable Development Goals" of the United Nations, which aim at reducing pollutants while implementing more sustainable food production practices, leading to a reduced impact on all ecosystems. In this context, the standard methods currently used in these fields represent a sub-optimal solution, being expensive, laboratory-based techniques, and typically requiring trained personnel with high expertise. Recent advances in both biotechnology and material science have led to the emergence of new sensing (and biosensing) technologies, enabling low-cost, precise, and real-time detection. An especially interesting category of biosensors is represented by field-effect transistor-based biosensors (bio-FETs), which enable the possibility of performing in situ, continuous, selective, and sensitive measurements of a wide palette of different parameters of interest. Furthermore, bio-FETs offer the possibility of being fabricated using innovative and sustainable materials, employing various device configurations, each customized for a specific application. In the specific field of environmental and agricultural monitoring, the exploitation of these devices is particularly attractive as it paves the way to early detection and intervention strategies useful to limit, or even completely avoid negative outcomes (such as diseases to animals or ecosystems losses). This review focuses exactly on bio-FETs for environmental and agricultural monitoring, highlighting the recent and most relevant studies. First, bio-FET technology is introduced, followed by a detailed description of the the most commonly employed configurations, the available device fabrication techniques, as well as the specific materials and recognition elements. Then, examples of studies employing bio-FETs for environmental and agricultural monitoring are presented, highlighting in detail advantages and disadvantages of available examples. Finally, in the discussion, the major challenges to be overcome (e.g., short device lifetime, small sensitivity and selectivity in complex media) are critically presented. Despite the current limitations and challenges, this review clearly shows that bio-FETs are extremely promising for new and disruptive innovations in these areas and others.


Asunto(s)
Técnicas Biosensibles , Transistores Electrónicos , Animales , Técnicas Biosensibles/métodos , Ecosistema
4.
Sensors (Basel) ; 22(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35408368

RESUMEN

In this work, we propose a novel disposable flexible and screen-printed electrochemical aptamer-based sensor (aptasensor) for the rapid detection of chlorpyrifos (CPF). To optimize the process, various characterization procedures were employed, including Fourier transform infrared spectroscopy (FT-IR), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Initially, the aptasensor was optimized in terms of electrolyte pH, aptamer concentration, and incubation time for chlorpyrifos. Under optimal conditions, the aptasensor showed a wide linear range from 1 to 105 ng/mL with a calculated limit of detection as low as 0.097 ng/mL and sensitivity of 600.9 µA/ng. Additionally, the selectivity of the aptasensor was assessed by identifying any interference from other pesticides, which were found to be negligible (with a maximum standard deviation of 0.31 mA). Further, the stability of the sample was assessed over time, where the reported device showed high stability over a period of two weeks at 4 °C. As the last step, the ability of the aptasensor to detect chlorpyrifos in actual samples was evaluated by testing it on banana and grape extracts. As a result, the device demonstrated sufficient recovery rates, which indicate that it can find application in the food industry.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cloropirifos , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas , Electrodos , Oro/química , Límite de Detección , Plata , Espectroscopía Infrarroja por Transformada de Fourier
5.
Sensors (Basel) ; 21(3)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503884

RESUMEN

The substrate plays a key role in chemoresistive gas sensors. It acts as mechanical support for the sensing material, hosts the heating element and, also, aids the sensing material in signal transduction. In recent years, a significant improvement in the substrate production process has been achieved, thanks to the advances in micro- and nanofabrication for micro-electro-mechanical system (MEMS) technologies. In addition, the use of innovative materials and smaller low-power consumption silicon microheaters led to the development of high-performance gas sensors. Various heater layouts were investigated to optimize the temperature distribution on the membrane, and a suspended membrane configuration was exploited to avoid heat loss by conduction through the silicon bulk. However, there is a lack of comprehensive studies focused on predictive models for the optimization of the thermal and mechanical properties of a microheater. In this work, three microheater layouts in three membrane sizes were developed using the microfabrication process. The performance of these devices was evaluated to predict their thermal and mechanical behaviors by using both experimental and theoretical approaches. Finally, a statistical method was employed to cross-correlate the thermal predictive model and the mechanical failure analysis, aiming at microheater design optimization for gas-sensing applications.

6.
Sensors (Basel) ; 22(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35009811

RESUMEN

Tetracycline (TC) is a widely known antibiotic used worldwide to treat animals. Its residues in animal-origin foods cause adverse health effects to consumers. Low-cost and real-time measuring systems of TC in food samples are, therefore, extremely needed. In this work, a three-electrode sensitive and label-free sensor was developed to detect TC residues from milk and meat extract samples, using CO2 laser-induced graphene (LIG) electrodes modified with gold nanoparticles (AuNPs) and a molecularly imprinted polymer (MIP) used as a synthetic biorecognition element. LIG was patterned on a polyimide (PI) substrate, reaching a minimum sheet resistance (Rsh) of 17.27 ± 1.04 Ω/sq. The o-phenylenediamine (oPD) monomer and TC template were electropolymerized on the surface of the LIG working electrode to form the MIP. Surface morphology and electrochemical techniques were used to characterize the formation of LIG and to confirm each modification step. The sensitivity of the sensor was evaluated by differential pulse voltammetry (DPV), leading to a limit of detection (LOD) of 0.32 nM, 0.85 nM, and 0.80 nM in buffer, milk, and meat extract samples, respectively, with a working range of 5 nM to 500 nM and a linear response range between 10 nM to 300 nM. The sensor showed good LOD (0.32 nM), reproducibility, and stability, and it can be used as an alternative system to detect TC from animal-origin food products.


Asunto(s)
Grafito , Nanopartículas del Metal , Impresión Molecular , Animales , Antibacterianos , Técnicas Electroquímicas , Electrodos , Oro , Rayos Láser , Límite de Detección , Carne , Leche , Polímeros Impresos Molecularmente , Polímeros , Reproducibilidad de los Resultados , Tetraciclina
7.
Sensors (Basel) ; 19(20)2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31652582

RESUMEN

In this paper, we demonstrate the feasibility of realization of transparent gas sensors based on carbon nanotubes (CNTs). Both sensing layer and electrodes consist of CNTs deposited by spray deposition. The transparent sensor-with a transmittance higher than 60% in both sensing layer and electrodes-is characterized towards NH3 and CO2 and compared with a reference sensor with the same active layer but evaporated Au electrodes. In particular, the sensitivity towards NH3 is virtually identical for both reference and transparent sensors, whereas the transparent device exhibits higher sensitivity to CO2 than the reference electrode. The effect of the spacing among consecutive electrodes is also studied, demonstrating that a wider spacing in fully CNT based sensors results in a higher sensitivity because of the higher sensing resistance, whereas this effect was not observed in gold electrodes, as their resistance can be neglected with respect to the resistance of the CNT sensing layer. Overall, the transparent sensors show performance comparable-if not superior-to the traditionally realized ones, opening the way for seamlessly integrated sensors, which do not compromise on quality.

8.
Sensors (Basel) ; 19(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514303

RESUMEN

Detection of mycotoxins, especially aflatoxin M1 (AFM1), in milk is crucial to be able to guarantee food quality and safety. In recent years, biosensors have been emerging as a fast, reliable and low-cost technique for the detection of this toxin. In this work, flexible biosensors were fabricated using dispense-printed electrodes, which were functionalized with single-walled carbon nanotubes (SWCNTs) and subsequently coated with specific antibodies to improve their sensitivity. Next, the immunosensor was tested for the detection of AFM1 in buffer solution and a spiked milk sample using a chronoamperometric technique. Results showed that the working range of the sensors was 0.01 µg/L at minimum and 1 µg/L at maximum in both buffer and spiked milk. The lower limit of detection of the SWCNT-functionalized sensor was 0.02 µg/L, which indicates an improved sensitivity compared to the sensors reported so far. The sensitivity and detection range were in accordance with the limitation values imposed by regulations on milk and its products. Therefore, considering the low fabrication cost, the ease of operation, and the rapid read-out, the use of this sensor could contribute to safeguarding consumers' health.


Asunto(s)
Aflatoxina M1/análisis , Técnicas Biosensibles/instrumentación , Electroquímica/instrumentación , Leche/química , Impresión , Animales , Tampones (Química) , Electrodos , Microscopía de Fuerza Atómica , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Docilidad , Estándares de Referencia , Soluciones
9.
Nanotechnology ; 29(48): 485701, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30207543

RESUMEN

In this work, we report on the fabrication and characterization of sub-300 nm electrode films based on solution-processed silver nanoparticles (AgNPs). Following the deposition of the electrode material using a scalable and homogenous spray process, the films are treated with thermal or photonic sintering to promote the coalescence of the nanoparticles and in turn decrease the resistivity of the films. After sintering, a resistivity of 63 ± 13 nΩ m is achieved for the AgNP films, which is only by a factor of four larger than the literature value for bulk silver. Both post-deposition treatments show a similar performance with regard to the achieved resistivity. However, photonic sintering avoids the need for thermal annealing at substrate temperatures of 150 °C and above. In addition, the photonic sintering process can easily be embedded in a roll-to-roll process and is extremely fast with light exposure times below 3 ms. Thus, this manufacturing technique paves the way for the use of flexible substrates in electronics. As a simple and practical application, we present the use of AgNP films for antennas operating in the 5 GHz band on flexible polyethylene terephthalate substrate. An original coplanar design is employed for the fabrication of antennas with a single conductive layer that exhibit a maximum return loss and radiation of -27 dB and 95%, respectively.

10.
Sensors (Basel) ; 18(7)2018 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-30011876

RESUMEN

This work describes a fully wireless sensory system where a chipless strategy is followed in the sensor part. Alternatively, to characterize only the sensing element, we present the response of the reader antenna when the sensing element is placed in its vicinity: changes in the parameter of interest are seen by the reader through inductive coupling, varying its frequency response. The sensing part consists of a LC circuit manufactured by printing techniques on a flexible substrate, whose electrical permittivity shows dependence with the moisture content. The measurement distance show significant differences in the frequency response: a change of 700 kHz is observed when the measurement is performed directly on the wireless chipless sensor between 20% and 80%RH, while this variation in frequency is reduced more than three times when measuring at the reader antenna with 5 mm distance between elements. Furthermore, we demonstrate the importance of the separation between reader and sensor to get a reliable measuring system.

11.
Sensors (Basel) ; 17(5)2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28524071

RESUMEN

A flexible enzymatic acetylcholinesterase biosensor based on an electrolyte-gated carbon nanotube field effect transistor is demonstrated. The enzyme immobilization is done on a planar gold gate electrode using 3-mercapto propionic acid as the linker molecule. The sensor showed good sensing capability as a sensor for the neurotransmitter acetylcholine, with a sensitivity of 5.7 µA/decade, and demonstrated excellent specificity when tested against interfering analytes present in the body. As the flexible sensor is supposed to suffer mechanical deformations, the endurance of the sensor was measured by putting it under extensive mechanical stress. The enzymatic activity was inhibited by more than 70% when the phosphate-buffered saline (PBS) buffer was spiked with 5 mg/mL malathion (an organophosphate) solution. The biosensor was successfully challenged with tap water and strawberry juice, demonstrating its usefulness as an analytical tool for organophosphate detection.


Asunto(s)
Nanotubos de Carbono , Técnicas Biosensibles , Electrodos , Electrólitos , Fosfatos
12.
Sensors (Basel) ; 17(3)2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28282850

RESUMEN

A printed passive radiofrequency identification (RFID) tag in the ultra-high frequency band for light and temperature monitoring is presented. The whole tag has been manufactured by printing techniques on a flexible substrate. Antenna and interconnects are realized with silver nanoparticles via inkjet printing. A sprayed photodetector performs the light monitoring, whereas temperature measurement comes from an in-built sensor in the silicon RFID chip. One of the advantages of this system is the digital read-out and transmission of the sensors information on the RFID tag that ensures reliability. Furthermore, the use of printing techniques allows large-scale manufacturing and the direct fabrication of the tag on the desired surface. This work proves for the first time the feasibility of the embedment of large-scale organic photodetectors onto inkjet printed RFID tags. Here, we solve the problem of integration of different manufacturing techniques to develop an optimal final sensor system.

13.
Chemistry ; 22(18): 6194-8, 2016 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919399

RESUMEN

Herein we present the functionalization of freestanding silicon nanosheets (SiNSs) by radical-induced hydrosilylation reactions. An efficient hydrosilylation of Si-H terminated SiNSs can be achieved by thermal initiation or the addition of diazonium salts with a variety of alkene or alkyne derivatives. The radical-induced hydrosilylation is applicable for a wide variety of substrates with different functionalities, improving the stability and dispersibility of the functional SiNSs in organic solvents and potentially opening up new fields of application for these hybrid materials.

14.
Opt Express ; 23(2): 1670-8, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25835923

RESUMEN

Based on self-consistent ensemble Monte Carlo simulations coupled to the optical field dynamics, we investigate the giant nonlinear susceptibility giving rise to terahertz difference frequency generation in quantum cascade laser structures. Specifically, the dependence on temperature, bias voltage and frequency is considered. It is shown that the optical nonlinearity is temperature insensitive and covers a broad spectral range, as required for widely tunable room temperature terahertz sources. The obtained results are consistent with available experimental data.

15.
Nanotechnology ; 25(5): 055208, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24407105

RESUMEN

We report the fabrication of carbon nanotube (CNT) based gas sensors functionalized with different metallic nanoparticles (NPs) (Au, Pd, Ag) with exceptionally high responses towards four test gases (NH3, CO2, CO and ethanol). The CNT networks were fabricated through a low cost spray deposition process while the NPs were deposited by a thermal evaporation process. CNT based gas sensors functionalized with Au with a nominal thickness of 1.0 nm showed superior response towards NH3, CO and ethanol. The sensors' normalized responses reached 92%, 22% and 32% with concentrations of 100 ppm, 50 ppm and 100 ppm for NH3, CO and ethanol respectively. CNT based gas sensors functionalized with Pd with a nominal thickness of 1.5 nm showed the best performance with CO2. The normalized response reached 3%, 6%, 12% and 17% with concentrations of 500 ppm, 1000 ppm, 2500 ppm and 5000 ppm of CO2 respectively. We also investigated the morphological and optical changes that occur to the NPs upon thermal treatment. Functionalization of CNT films deposited on glass with Au and Ag showed surface plasmon resonance effects that are dependent on the nominal thickness of the functionalization layer.

16.
Sci Rep ; 14(1): 825, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191903

RESUMEN

In vitro simulators of the human gastrointestinal (GI) tract are remarkable technological platforms for studying the impact of food on the gut microbiota, enabling continuous and real-time monitoring of key biomarkers. However, comprehensive real-time monitoring of gaseous biomarkers in these systems is required with a cost-effective approach, which has been challenging to perform experimentally to date. In this work, we demonstrate the integration and in-line use of carbon nanotube (CNT)-based chemiresitive gas sensors coated with a thin polydimethylsiloxane (PDMS) membrane for the continuous monitoring of gases within the Simulator of the Human Microbial Ecosystem (SHIME). The findings demonstrate the ability of the gas sensor to continuously monitor the different phases of gas production in this harsh, anaerobic, highly humid, and acidic environment for a long exposure time (16 h) without saturation. This establishes our sensor platform as an effective tool for real-time monitoring of gaseous biomarkers in in vitro systems like SHIME.


Asunto(s)
Gases , Intestinos , Humanos , Biomarcadores , Alimentos , Nanotubos de Carbono , Intestinos/fisiología
17.
Opt Express ; 21(5): 6180-5, 2013 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-23482186

RESUMEN

We present an extended ensemble Monte Carlo approach, allowing for the self-consistent modeling of terahertz difference frequency generation in quantum cascade lasers. Our simulations are validated against available experimental data for a current room temperature design. Tera-hertz output powers in the mW range are predicted for ideal light extraction.

18.
Langmuir ; 28(8): 4024-9, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22316418

RESUMEN

Soft lithography has gathered wide interest for the fabrication of unconventional micrometer and nanometer-sized structures and devices. Nevertheless, accurate alignment is essential to achieve multilevel soft lithography. Because of the soft nature of the stamp materials, such as soft polydimethylsiloxane, they are susceptible to mechanical distortions, which lower the registration accuracy. To reduce the distortions we backed the stamp with a polymer foil and minimized the overall forces applied to the stamp. We furthermore employed an alignment method using additive type moiré fringe technique that is easy to implement and does not require extensive processing steps. The alignment results show less than 1 µm misalignment when the stamp is brought again onto a previously structured rigid template. When performing two consecutive lithography steps by transfer printing of thin gold films, we were able to obtain average registration accuracy of 1.3 µm over an area of 400 mm(2). This method is versatile and can be used for several soft lithography techniques. Better results can be obtained with smaller moiré gratings and the use of harder materials.

19.
ACS Appl Mater Interfaces ; 14(4): 5328-5337, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35049272

RESUMEN

Electronic waste produced by plastic, toxic, and semiconducting components of existing electronic devices is dramatically increasing environmental pollution. To overcome these issues, the use of eco-friendly materials for designing such devices is attaining much attention. This current work presents a recycled material-based triboelectric nanogenerator (TENG) made of plastic waste and carbon-coated paper wipes (C@PWs), in which the PWs are also collected from a waste bin. The resultant C@PW-based TENG is then used for powering low-power electronic devices and, later, to generate a Morse code from a wearable for autonomous communication. In this application, the end users decode the Morse code from a customized LabVIEW program and read the transmitted signal. With further redesigning, a 9-segment keyboard is developed using nine-TENGs, connected to an Arduino controller to display the 9-segment actuation on a computer screen. Based on the above analysis, our C@PW-TENG device is expected to have an impact on future self-powered sensors and internet of things systems.

20.
Biosensors (Basel) ; 12(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36004970

RESUMEN

Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This "smart" SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor's response. This can be explained by considering the aptamers' conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule.


Asunto(s)
Compuestos de Amonio , Aptámeros de Nucleótidos , Técnicas Biosensibles , Aptámeros de Nucleótidos/química , Ligandos , Técnica SELEX de Producción de Aptámeros/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA