Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(6): 1461-1476.e23, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30849374

RESUMEN

Maintaining the optimal performance of cell processes and organelles is the task of auto-regulatory systems. Here we describe an auto-regulatory device that helps to maintain homeostasis of the endoplasmic reticulum (ER) by adjusting the secretory flux to the cargo load. The cargo-recruiting subunit of the coatomer protein II (COPII) coat, Sec24, doubles as a sensor of folded cargo and, upon cargo binding, acts as a guanine nucleotide exchange factor to activate the signaling protein Gα12 at the ER exit sites (ERESs). This step, in turn, activates a complex signaling network that activates and coordinates the ER export machinery and attenuates proteins synthesis, thus preventing large fluctuations of folded and potentially active cargo that could be harmful to the cell or the organism. We call this mechanism AREX (autoregulation of ER export) and expect that its identification will aid our understanding of human physiology and diseases that develop from secretory dysfunction.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Transporte Biológico , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Vesículas Cubiertas por Proteínas de Revestimiento/fisiología , Línea Celular , Proteína Coatómero/metabolismo , Retículo Endoplásmico/fisiología , Estrés del Retículo Endoplásmico/fisiología , Femenino , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Células HeLa , Humanos , Masculino , Pliegue de Proteína , Transporte de Proteínas , Proteostasis/fisiología , Transducción de Señal
2.
EMBO J ; 40(20): e107766, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34516001

RESUMEN

The Golgi apparatus, the main glycosylation station of the cell, consists of a stack of discontinuous cisternae. Glycosylation enzymes are usually concentrated in one or two specific cisternae along the cis-trans axis of the organelle. How such compartmentalized localization of enzymes is achieved and how it contributes to glycosylation are not clear. Here, we show that the Golgi matrix protein GRASP55 directs the compartmentalized localization of key enzymes involved in glycosphingolipid (GSL) biosynthesis. GRASP55 binds to these enzymes and prevents their entry into COPI-based retrograde transport vesicles, thus concentrating them in the trans-Golgi. In genome-edited cells lacking GRASP55, or in cells expressing mutant enzymes without GRASP55 binding sites, these enzymes relocate to the cis-Golgi, which affects glycosphingolipid biosynthesis by changing flux across metabolic branch points. These findings reveal a mechanism by which a matrix protein regulates polarized localization of glycosylation enzymes in the Golgi and controls competition in glycan biosynthesis.


Asunto(s)
Glicoesfingolípidos/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Brefeldino A/farmacología , Ceramidas/metabolismo , Toxina del Cólera/farmacología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Expresión Génica , Glicosilación/efectos de los fármacos , Aparato de Golgi/efectos de los fármacos , Aparato de Golgi/genética , Proteínas de la Matriz de Golgi/genética , Células HeLa , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Toxina Shiga/farmacología
3.
EMBO J ; 40(8): e107238, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33749896

RESUMEN

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.


Asunto(s)
Proliferación Celular , Glicoesfingolípidos/biosíntesis , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Transducción de Señal
4.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969853

RESUMEN

Adenosine diphosphate (ADP)-ribosylation is a posttranslational modification involved in key regulatory events catalyzed by ADP-ribosyltransferases (ARTs). Substrate identification and localization of the mono-ADP-ribosyltransferase PARP12 at the trans-Golgi network (TGN) hinted at the involvement of ARTs in intracellular traffic. We find that Golgin-97, a TGN protein required for the formation and transport of a specific class of basolateral cargoes (e.g., E-cadherin and vesicular stomatitis virus G protein [VSVG]), is a PARP12 substrate. PARP12 targets an acidic cluster in the Golgin-97 coiled-coil domain essential for function. Its mutation or PARP12 depletion, delays E-cadherin and VSVG export and leads to a defect in carrier fission, hence in transport, with consequent accumulation of cargoes in a trans-Golgi/Rab11-positive intermediate compartment. In contrast, PARP12 does not control the Golgin-245-dependent traffic of cargoes such as tumor necrosis factor alpha (TNFα). Thus, the transport of different basolateral proteins to the plasma membrane is differentially regulated by Golgin-97 mono-ADP-ribosylation by PARP12. This identifies a selective regulatory mechanism acting on the transport of Golgin-97- vs. Golgin-245-dependent cargoes. Of note, PARP12 enzymatic activity, and consequently Golgin-97 mono-ADP-ribosylation, depends on the activation of protein kinase D (PKD) at the TGN during traffic. PARP12 is directly phosphorylated by PKD, and this is essential to stimulate PARP12 catalytic activity. PARP12 is therefore a component of the PKD-driven regulatory cascade that selectively controls a major branch of the basolateral transport pathway. We propose that through this mechanism, PARP12 contributes to the maintenance of E-cadherin-mediated cell polarity and cell-cell junctions.


Asunto(s)
ADP-Ribosilación/fisiología , Autoantígenos/metabolismo , Cadherinas/metabolismo , Membrana Celular/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteína Quinasa C/metabolismo , Antígenos CD , Catálisis , Células HeLa , Humanos , Transporte de Proteínas , Factor de Necrosis Tumoral alfa , Red trans-Golgi/metabolismo
5.
Acta Oncol ; 62(8): 969-976, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37750301

RESUMEN

PURPOSE: Axillary Web Syndrome (AWS) is a common sequela after surgical axillary lymph node dissection (ALND) often manifesting with reduced range of motion (ROM) of the limb, which requires rehabilitation. Notwithstanding, a standardized rehabilitation protocol is currently lacking in clinical practice. Our primary objective was therefore to evaluate the effectiveness of the use of a snapping manual maneuver (SMM, used in our clinical practice) to increase ROM during abduction (ABD) when compared with a standardized stretching exercise (SSE) protocol. A three-year follow-up of the enrolled patients was also carried out to determine the incidence of Breast Cancer-Related Lymphedema (BCRL). MATERIALS AND METHODS: Between July 2013 and January 2019, we conducted a single-blinded randomized clinical trial. A total of 60 patients, who underwent ALND in our hospital, came to our clinic under medical advice or on voluntary access and reported AWS symptoms. The patients were randomly assigned into two equally divided groups. The treatment of group one consists in the execution of a supervised SSEs protocol, while group two additionally received a manual snapping maneuver. Patients of both groups received two treatment sessions within two weeks. At the end of the session, they were asked to continue the exercises autonomously on a daily basis, three times per day, for one month. RESULTS: There were no statically significant differences in ROM at our one-month follow-up and the incidence of BCRL was equally distributed after three years. CONCLUSIONS: The use of the manual snapping maneuver in addition to stretching once per week for two weeks does not appear to improve the outcome of the patients in comparison with stretching alone and does not appear to be related to lymphedema in our 3 years follow-up.


Asunto(s)
Linfedema , Hombro , Humanos , Progresión de la Enfermedad , Ejercicio Físico , Extremidades , Linfedema/etiología , Linfedema/terapia , Rango del Movimiento Articular , Axila
6.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36674888

RESUMEN

The Golgi complex (GC) is the main station along the cell biosecretory pathway. Until now, mechanisms of intra-Golgi transport (IGT) have remained unclear. Herein, we confirm that the goodness-of-fit of the regression lines describing the exit of a cargo from the Golgi zone (GZ) corresponds to an exponential decay. When the GC was empty before the re-initiation of the intra-Golgi transport, this parameter of the curves describing the kinetics of different cargoes (which are deleted in Golgi vesicles) with different diffusional mobilities within the GZ as well as their exit from the GZ was maximal for the piecewise nonlinear regression, wherein the first segment was horizontal, while the second segment was similar to the exponential decay. The kinetic curve describing cargo exit from the GC per se resembled a linear decay. The Monte-Carlo simulation revealed that such curves reflect the role of microtubule growth in cells with a central GC or the random hovering of ministacks in cells lacking a microtubule. The synchronization of cargo exit from the GC already filled with a cargo using the wave synchronization protocol did not reveal the equilibration of cargo within a Golgi stack, which would be expected from the diffusion model (DM) of IGT. Moreover, not all cisternae are connected to each other in mini-stacks that are transporting membrane proteins. Finally, the kinetics of post-Golgi carriers and the important role of SNAREs for IGT at different level of IGT also argue against the DM of IGT.


Asunto(s)
Aparato de Golgi , Transporte Biológico , Difusión , Aparato de Golgi/metabolismo , Transporte de Proteínas
7.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29282205

RESUMEN

Neural development is accomplished by differentiation events leading to metabolic reprogramming. Glycosphingolipid metabolism is reprogrammed during neural development with a switch from globo- to ganglio-series glycosphingolipid production. Failure to execute this glycosphingolipid switch leads to neurodevelopmental disorders in humans, indicating that glycosphingolipids are key players in this process. Nevertheless, both the molecular mechanisms that control the glycosphingolipid switch and its function in neurodevelopment are poorly understood. Here, we describe a self-contained circuit that controls glycosphingolipid reprogramming and neural differentiation. We find that globo-series glycosphingolipids repress the epigenetic regulator of neuronal gene expression AUTS2. AUTS2 in turn binds and activates the promoter of the first and rate-limiting ganglioside-producing enzyme GM3 synthase, thus fostering the synthesis of gangliosides. By this mechanism, the globo-AUTS2 axis controls glycosphingolipid reprogramming and neural gene expression during neural differentiation, which involves this circuit in neurodevelopment and its defects in neuropathology.


Asunto(s)
Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Glicoesfingolípidos/metabolismo , Neurogénesis/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Reprogramación Celular/efectos de los fármacos , Proteínas del Citoesqueleto , Epigenómica , Gangliósidos/metabolismo , Expresión Génica , Silenciador del Gen , Glicoesfingolípidos/farmacología , Células HeLa , Histonas/metabolismo , Humanos , Trastornos del Neurodesarrollo , Neurogénesis/efectos de los fármacos , Neurogénesis/genética , Neuronas/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Proteínas/genética , Proteínas/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Factores de Transcripción
8.
Lancet Oncol ; 22(5): 597-608, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33845035

RESUMEN

BACKGROUND: In the randomised, phase 3 equivalence trial on electron intraoperative radiotherapy (ELIOT), accelerated partial breast irradiation (APBI) with the use of intraoperative radiotherapy was associated with a higher rate of ipsilateral breast tumour recurrence (IBTR) than whole-breast irradiation (WBI) in patients with early-stage breast cancer. Here, we aimed to examine the planned long-term recurrence and survival outcomes from the ELIOT trial. METHODS: This single-centre, randomised, phase 3 equivalence trial was done at the European Institute of Oncology (Milan, Italy). Eligible women, aged 48-75 years with a clinical diagnosis of a unicentric breast carcinoma with an ultrasound diameter not exceeding 25 mm, clinically negative axillary lymph nodes, and who were suitable for breast-conserving surgery, were randomly assigned (1:1) via a web-based system, with a random permuted block design (block size of 16) and stratified by clinical tumour size, to receive post-operative WBI with conventional fractionation (50 Gy given as 25 fractions of 2 Gy, plus a 10 Gy boost), or 21 Gy intraoperative radiotherapy with electrons (ELIOT) in a single dose to the tumour bed during surgery. The trial was open label and no-one was masked to treatment group assignment. The primary endpoint was the occurrence of IBTR. The trial was designed assuming a 5-year IBTR rate of 3% in the WBI group and equivalence of the two groups, if the 5-year IBTR rate in the ELIOT group did not exceed a 2·5 times excess, corresponding to 7·5%. Overall survival was the secondary endpoint. The main analysis was done by intention to treat. The cumulative incidence of IBTR events and overall survival were assessed at 5, 10, and 15 years of follow-up. This trial is registered with ClinicalTrials.gov, NCT01849133. FINDINGS: Between Nov 20, 2000, and Dec 27, 2007, 1305 women were enrolled and randomly assigned: 654 to the WBI group and 651 to the ELIOT group. After a median follow-up of 12·4 years (IQR 9·7-14·7), 86 (7%) patients developed IBTR, with 70 (11%) cases in the ELIOT group and 16 (2%) in the WBI group, corresponding to an absolute excess of 54 IBTRs in the ELIOT group (HR 4·62, 95% CI 2·68-7·95, p<0·0001). In the ELIOT group, the 5-year IBTR rate was 4·2% (95% CI 2·8-5·9), the 10-year rate was 8·1% (6·1-10·3), and the 15-year rate was 12·6% (9·8-15·9). In the WBI group, the 5-year IBTR rate was 0·5% (95% CI 0·1-1·3), the 10-year rate was 1·1% (0·5-2·2), and the 15-year rate was 2·4% (1·4-4·0). At final follow-up on March 11, 2019, 193 (15%) women had died from any cause, with no difference between the two groups (98 deaths in the ELIOT group vs 95 in the WBI group; HR 1·03, 95% CI 0·77-1·36, p=0·85). In the ELIOT group, the overall survival rate was 96·8% (95% CI 95·1-97·9) at 5 years, 90·7% (88·2-92·7) at 10 years, and 83·4% (79·7-86·4) at 15 years; and in the WBI group, the overall survival rate was 96·8% (95·1-97·9) at 5 years, 92·7% (90·4-94·4) at 10 years, and 82·4% (78·5-85·6) at 15 years. We did not collect long-term data on adverse events. INTERPRETATION: The long-term results of this trial confirmed the higher rate of IBTR in the ELIOT group than in the WBI group, without any differences in overall survival. ELIOT should be offered to selected patients at low-risk of IBTR. FUNDING: Italian Association for Cancer Research, Jacqueline Seroussi Memorial Foundation for Cancer Research, Umberto Veronesi Foundation, American Italian Cancer Foundation, The Lombardy Region, and Italian Ministry of Health.


Asunto(s)
Neoplasias de la Mama/radioterapia , Electrones/uso terapéutico , Recurrencia Local de Neoplasia/epidemiología , Adulto , Anciano , Mama/efectos de la radiación , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Femenino , Humanos , Persona de Mediana Edad
9.
EMBO J ; 36(12): 1736-1754, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28495678

RESUMEN

Sphingolipids are membrane lipids globally required for eukaryotic life. The sphingolipid content varies among endomembranes with pre- and post-Golgi compartments being poor and rich in sphingolipids, respectively. Due to this different sphingolipid content, pre- and post-Golgi membranes serve different cellular functions. The basis for maintaining distinct subcellular sphingolipid levels in the presence of membrane trafficking and metabolic fluxes is only partially understood. Here, we describe a homeostatic regulatory circuit that controls sphingolipid levels at the trans-Golgi network (TGN). Specifically, we show that sphingomyelin production at the TGN triggers a signalling pathway leading to PtdIns(4)P dephosphorylation. Since PtdIns(4)P is required for cholesterol and sphingolipid transport to the trans-Golgi network, PtdIns(4)P consumption interrupts this transport in response to excessive sphingomyelin production. Based on this evidence, we envisage a model where this homeostatic circuit maintains a constant lipid composition in the trans-Golgi network and post-Golgi compartments, thus counteracting fluctuations in the sphingolipid biosynthetic flow.


Asunto(s)
Fosfatidilinositoles/metabolismo , Esfingolípidos/metabolismo , Red trans-Golgi/metabolismo , Células HeLa , Homeostasis , Humanos , Modelos Biológicos
10.
Nat Rev Mol Cell Biol ; 9(4): 273-84, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18354421

RESUMEN

The composition and identity of cell organelles are dictated by the flux of lipids and proteins that they receive and lose through cytosolic exchange and membrane trafficking. The trans-Golgi network (TGN) is a major sorting centre for cell lipids and proteins at the crossroads of the endocytic and exocytic pathways; it has a complex dynamic structure composed of a network of tubular membranes that generate pleiomorphic carriers targeted to different destinations. Live-cell imaging combined with three-dimensional tomography has recently provided the temporal and topographical framework that allows the assembly of the numerous molecular machineries so far implicated in sorting and trafficking at the TGN.


Asunto(s)
Aparato de Golgi/metabolismo , Actinas/metabolismo , Animales , Transporte Biológico , Endocitosis , Exocitosis , Aparato de Golgi/ultraestructura , Humanos , Red trans-Golgi/metabolismo , Red trans-Golgi/ultraestructura
11.
Cell Commun Signal ; 17(1): 20, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30823936

RESUMEN

BACKGROUND: Shp1, a tyrosine-phosphatase-1 containing the Src-homology 2 (SH2) domain, is involved in inflammatory and immune reactions, where it regulates diverse signalling pathways, usually by limiting cell responses through dephosphorylation of target molecules. Moreover, Shp1 regulates actin dynamics. One Shp1 target is Src, which controls many cellular functions including actin dynamics. Src has been previously shown to be activated by a signalling cascade initiated by the cytosolic-phospholipase A2 (cPLA2) metabolite glycerophosphoinositol 4-phosphate (GroPIns4P), which enhances actin polymerisation and motility. While the signalling cascade downstream Src has been fully defined, the mechanism by which GroPIns4P activates Src remains unknown. METHODS: Affinity chromatography, mass spectrometry and co-immunoprecipitation studies were employed to identify the GroPIns4P-interactors; among these Shp1 was selected for further analysis. The specific Shp1 residues interacting with GroPIns4P were revealed by NMR and validated by site-directed mutagenesis and biophysical methods such as circular dichroism, isothermal calorimetry, fluorescence spectroscopy, surface plasmon resonance and computational modelling. Morphological and motility assays were performed in NIH3T3 fibroblasts. RESULTS: We find that Shp1 is the direct cellular target of GroPIns4P. GroPIns4P directly binds to the Shp1-SH2 domain region (with the crucial residues being Ser 118, Arg 138 and Ser 140) and thereby promotes the association between Shp1 and Src, and the dephosphorylation of the Src-inhibitory phosphotyrosine in position 530, resulting in Src activation. As a consequence, fibroblast cells exposed to GroPIns4P show significantly enhanced wound healing capability, indicating that GroPIns4P has a stimulatory role to activate fibroblast migration. GroPIns4P is produced by cPLA2 upon stimulation by diverse receptors, including the EGF receptor. Indeed, endogenously-produced GroPIns4P was shown to mediate the EGF-induced cell motility. CONCLUSIONS: This study identifies a so-far undescribed mechanism of Shp1/Src modulation that promotes cell motility and that is dependent on the cPLA2 metabolite GroPIns4P. We show that GroPIns4P is required for EGF-induced fibroblast migration and that it is part of a cPLA2/GroPIns4P/Shp1/Src cascade that might have broad implications for studies of immune-inflammatory response and cancer.


Asunto(s)
Movimiento Celular , Receptores ErbB/metabolismo , Fosfatos de Inositol/metabolismo , Fosfolipasas A2/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Transducción de Señal , Familia-src Quinasas/metabolismo , Animales , Sitios de Unión , Factor de Crecimiento Epidérmico/farmacología , Ratones , Células 3T3 NIH , Fosforilación , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 6/química , Células RAW 264.7 , Cicatrización de Heridas , Dominios Homologos src
12.
J Cell Physiol ; 233(3): 2304-2312, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28710861

RESUMEN

Ketoprofen L-lysine salt (KLS), is widely used due to its analgesic efficacy and tolerability, and L-lysine was reported to increase the solubility and the gastric tolerance of ketoprofen. In a recent report, L-lysine salification has been shown to exert a gastroprotective effect due to its specific ability to counteract the NSAIDs-induced oxidative stress and up-regulate gastroprotective proteins. In order to derive further insights into the safety and efficacy profile of KLS, in this study we additionally compared the effect of lysine and arginine, another amino acid counterion commonly used for NSAIDs salification, in control and in ethanol challenged human gastric mucosa model. KLS is widely used for the control of post-surgical pain and for the management of pain and fever in inflammatory conditions in children and adults. It is generally well tolerated in pediatric patients, and data from three studies in >900 children indicate that oral administration is well tolerated when administered for up to 3 weeks after surgery. Since only few studies have so far investigated the effect of ketoprofen on gastric mucosa maintenance and adaptive mechanisms, in the second part of the study we applied the cMap approach to compare ketoprofen-induced and ibuprofen-induced gene expression profiles in order to explore compound-specific targeted biological pathways. Among the several genes exclusively modulated by ketoprofen, our attention was particularly focused on genes involved in the maintenance of gastric mucosa barrier integrity (cell junctions, morphology, and viability). The hypothesis was further validated by Real-time PCR.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Arginina/farmacología , Células Epiteliales/efectos de los fármacos , Etanol/toxicidad , Mucosa Gástrica/efectos de los fármacos , Ibuprofeno/farmacología , Cetoprofeno/análogos & derivados , Lisina/análogos & derivados , Antiinflamatorios no Esteroideos/toxicidad , Arginina/toxicidad , Supervivencia Celular/efectos de los fármacos , Citoprotección , Combinación de Medicamentos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Ibuprofeno/toxicidad , Cetoprofeno/farmacología , Cetoprofeno/toxicidad , Lisina/farmacología , Lisina/toxicidad , Células MCF-7 , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Tiempo , Transcriptoma/efectos de los fármacos
13.
Proc Natl Acad Sci U S A ; 112(17): E2174-81, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25870285

RESUMEN

The organization and mutual interactions between endoplasmic reticulum (ER) and mitochondria modulate key aspects of cell pathophysiology. Several proteins have been suggested to be involved in keeping ER and mitochondria at a correct distance. Among them, in mammalian cells, mitofusin 2 (Mfn2), located on both the outer mitochondrial membrane and the ER surface, has been proposed to be a physical tether between the two organelles, forming homotypic interactions and heterocomplexes with its homolog Mfn1. Recently, this widely accepted model has been challenged using quantitative EM analysis. Using a multiplicity of morphological, biochemical, functional, and genetic approaches, we demonstrate that Mfn2 ablation increases the structural and functional ER-mitochondria coupling. In particular, we show that in different cell types Mfn2 ablation or silencing increases the close contacts between the two organelles and strengthens the efficacy of inositol trisphosphate (IP3)-induced Ca(2+) transfer from the ER to mitochondria, sensitizing cells to a mitochondrial Ca(2+) overload-dependent death. We also show that the previously reported discrepancy between electron and fluorescence microscopy data on ER-mitochondria proximity in Mfn2-ablated cells is only apparent. By using a different type of morphological analysis of fluorescent images that takes into account (and corrects for) the gross modifications in mitochondrial shape resulting from Mfn2 ablation, we demonstrate that an increased proximity between the organelles is also observed by confocal microscopy when Mfn2 levels are reduced. Based on these results, we propose a new model for ER-mitochondria juxtaposition in which Mfn2 works as a tethering antagonist preventing an excessive, potentially toxic, proximity between the two organelles.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/genética , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Animales , Retículo Endoplásmico/diagnóstico por imagen , GTP Fosfohidrolasas/genética , Células HeLa , Humanos , Transporte Iónico/fisiología , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/ultraestructura , Membranas Mitocondriales , Proteínas Mitocondriales/genética , Ultrasonografía
14.
Hepatology ; 63(6): 1842-59, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26660341

RESUMEN

UNLABELLED: Wilson disease (WD) is an autosomal recessive disorder that is caused by the toxic accumulation of copper (Cu) in the liver. The ATP7B gene, which is mutated in WD, encodes a multitransmembrane domain adenosine triphosphatase that traffics from the trans-Golgi network to the canalicular area of hepatocytes, where it facilitates excretion of excess Cu into the bile. Several ATP7B mutations, including H1069Q and R778L that are two of the most frequent variants, result in protein products, which, although still functional, remain in the endoplasmic reticulum. Thus, they fail to reach Cu excretion sites, resulting in the toxic buildup of Cu in the liver of WD patients. Therefore, correcting the location of these mutants by leading them to the appropriate functional sites in the cell should restore Cu excretion and would be beneficial to help large cohorts of WD patients. However, molecular targets for correction of endoplasmic reticulum-retained ATP7B mutants remain elusive. Here, we show that expression of the most frequent ATP7B mutant, H1069Q, activates p38 and c-Jun N-terminal kinase signaling pathways, which favor the rapid degradation of the mutant. Suppression of these pathways with RNA interference or specific chemical inhibitors results in the substantial rescue of ATP7B(H1069Q) (as well as that of several other WD-causing mutants) from the endoplasmic reticulum to the trans-Golgi network compartment, in recovery of its Cu-dependent trafficking, and in reduction of intracellular Cu levels. CONCLUSION: Our findings indicate p38 and c-Jun N-terminal kinase as intriguing targets for correction of WD-causing mutants and, hence, as potential candidates, which could be evaluated for the development of novel therapeutic strategies to combat WD. (Hepatology 2016;63:1842-1859).


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Transporte de Catión/genética , Degeneración Hepatolenticular/genética , Sistema de Señalización de MAP Quinasas , Cobre/metabolismo , ATPasas Transportadoras de Cobre , Células HeLa , Células Hep G2 , Degeneración Hepatolenticular/metabolismo , Humanos , Hígado/metabolismo , Mutación , Vías Secretoras
15.
EMBO J ; 31(13): 2869-81, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22580821

RESUMEN

Membrane trafficking involves large fluxes of cargo and membrane across separate compartments. These fluxes must be regulated by control systems to maintain homoeostasis. While control systems for other key functions such as protein folding or the cell cycle are well known, the mechanisms that control secretory transport are poorly understood. We have previously described a signalling circuit operating at the Golgi complex that regulates intra-Golgi trafficking and is initiated by the KDEL receptor (KDEL-R), a protein previously known to mediate protein recycling from the Golgi to the endoplasmic reticulum (ER). Here, we investigated the KDEL-R signalling mechanism. We show that the KDEL-R is predicted to fold like a G-protein-coupled receptor (GPCR), and that it binds and activates the heterotrimeric signalling G-protein Gα(q/11) which, in turn, regulates transport through the Golgi complex. These findings reveal an unexpected GPCR-like mode of action of the KDEL-R and shed light on a core molecular control mechanism of intra-Golgi traffic.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Aparato de Golgi/metabolismo , Receptores de Péptidos/metabolismo , Familia-src Quinasas/metabolismo , Simulación por Computador , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Transporte de Proteínas/fisiología , Transducción de Señal/fisiología
16.
J Cell Sci ; 127(Pt 5): 977-93, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24413173

RESUMEN

Previous studies have demonstrated that membrane tubule-mediated transport events in biosynthetic and endocytic routes require phospholipase A2 (PLA2) activity. Here, we show that cytosolic phospholipase A2ε (cPLA2ε, also known as PLA2G4E) is targeted to the membrane compartments of the clathrin-independent endocytic route through a C-terminal stretch of positively charged amino acids, which allows the enzyme to interact with phosphoinositide lipids [especially PI(4,5)P2] that are enriched in clathrin-independent endosomes. Ablation of cPLA2ε suppressed the formation of tubular elements that carry internalized clathrin-independent cargoes, such as MHC-I, CD147 and CD55, back to the cell surface and, therefore, caused their intracellular retention. The ability of cPLA2ε to support recycling through tubule formation relies on the catalytic activity of the enzyme, because the inactive cPLA2ε(S420A) mutant was not able to recover either tubule growth or transport from clathrin-independent endosomes. Taken together, our findings indicate that cPLA2ε is a new important regulator of trafficking processes within the clathrin-independent endocytic and recycling route. The affinity of cPLA2ε for this pathway supports a new hypothesis that different PLA2 enzymes use selective targeting mechanisms to regulate tubule formation locally during specific trafficking steps in the secretory and/or endocytic systems.


Asunto(s)
Clatrina/metabolismo , Endocitosis , Fosfolipasas A2 Grupo IV/fisiología , Secuencia de Aminoácidos , Señalización del Calcio , Endosomas/metabolismo , Fosfolipasas A2 Grupo IV/química , Células HeLa , Humanos , Hidrólisis , Datos de Secuencia Molecular , Fosfatidilinositoles/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas
17.
Proc Natl Acad Sci U S A ; 110(24): 9794-9, 2013 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-23716697

RESUMEN

ADP-ribosylation is a posttranslational modification that modulates the functions of many target proteins. We previously showed that the fungal toxin brefeldin A (BFA) induces the ADP-ribosylation of C-terminal-binding protein-1 short-form/BFA-ADP-ribosylation substrate (CtBP1-S/BARS), a bifunctional protein with roles in the nucleus as a transcription factor and in the cytosol as a regulator of membrane fission during intracellular trafficking and mitotic partitioning of the Golgi complex. Here, we report that ADP-ribosylation of CtBP1-S/BARS by BFA occurs via a nonconventional mechanism that comprises two steps: (i) synthesis of a BFA-ADP-ribose conjugate by the ADP-ribosyl cyclase CD38 and (ii) covalent binding of the BFA-ADP-ribose conjugate into the CtBP1-S/BARS NAD(+)-binding pocket. This results in the locking of CtBP1-S/BARS in a dimeric conformation, which prevents its binding to interactors known to be involved in membrane fission and, hence, in the inhibition of the fission machinery involved in mitotic Golgi partitioning. As this inhibition may lead to arrest of the cell cycle in G2, these findings provide a strategy for the design of pharmacological blockers of cell cycle in tumor cells that express high levels of CD38.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Brefeldino A/metabolismo , Proteínas de Unión al ADN/metabolismo , ADP-Ribosil Ciclasa/metabolismo , ADP-Ribosil Ciclasa 1/metabolismo , Oxidorreductasas de Alcohol/química , Animales , Sitios de Unión , Unión Competitiva , Western Blotting , Brefeldino A/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Proteínas de Unión al ADN/química , Células HeLa , Humanos , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , NAD/química , NAD/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Terciaria de Proteína , Ratas
18.
Traffic ; 14(2): 121-34, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23078632

RESUMEN

Numerous components of signaling pathways involved in key cellular processes reside on the Golgi complex. Here, we will focus on the roles of signaling proteins that regulate cargo trafficking along the anterograde and retrograde pathways. Emphasis will also be put on the effects of these regulatory proteins on the maintenance of the structure and function of the Golgi, and in particular on the phosphorylation of key components of the transport machinery. These pathways position the Golgi complex as a central hub in the regulation of cell signaling. To date, however, the activation and coordination of these signaling molecules remain a mystery. Being able to describe the interplay between several of these signaling pathways and secretion, and the flow of information through these pathways, will help us to understand how the secretory machinery works and how it interacts with other cellular functions. This will also advance our understanding of how the secretory pathway functions under physiological circumstances, and how its dysregulation can initiate pathological conditions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Aparato de Golgi/metabolismo , Transducción de Señal , Animales , Humanos , Transporte de Proteínas
19.
Biol Cell ; 106(8): 254-67, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24867236

RESUMEN

BACKGROUND INFORMATION: The centrosome is the primary microtubule-organising centre of animal cells and it has crucial roles in several fundamental cellular functions, including cell division, cell polarity, and intracellular transport. The mechanisms responsible for this are not completely understood. RESULTS: The poorly characterised protein CEP126 localises to the centrosome, pericentriolar satellites and the base of the primary cilium. Suppression of CEP126 expression results in dispersion of the pericentriolar satellites and disruption of the radial organisation of the microtubules, and induces disorganisation of the mitotic spindle. Moreover, CEP126 depletion or the transfection of a CEP126 truncation mutant in hTERT-RPE-1 and IMCD3 cells impairs the formation of the primary cilium. CONCLUSIONS: We propose that CEP126 is a regulator of microtubule organisation at the centrosome that acts through modulation of the transport of pericentriolar satellites, and consequently, of the organisation of cell structure.


Asunto(s)
Centrosoma/fisiología , Cilios/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas de Microtúbulos/fisiología , Animales , Células COS , Proteínas de Ciclo Celular , Centrosoma/ultraestructura , Chlorocebus aethiops , Cilios/ultraestructura , Humanos , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA