Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Clin Sci (Lond) ; 138(15): 941-962, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39018488

RESUMEN

Atrial fibrillation (AF) remains challenging to prevent and treat. A key feature of AF is atrial enlargement. However, not all atrial enlargement progresses to AF. Atrial enlargement in response to physiological stimuli such as exercise is typically benign and reversible. Understanding the differences in atrial function and molecular profile underpinning pathological and physiological atrial remodelling will be critical for identifying new strategies for AF. The discovery of molecular mechanisms responsible for pathological and physiological ventricular hypertrophy has uncovered new drug targets for heart failure. Studies in the atria have been limited in comparison. Here, we characterised mouse atria from (1) a pathological model (cardiomyocyte-specific transgenic (Tg) that develops dilated cardiomyopathy [DCM] and AF due to reduced protective signalling [PI3K]; DCM-dnPI3K), and (2) a physiological model (cardiomyocyte-specific Tg with an enlarged heart due to increased insulin-like growth factor 1 receptor; IGF1R). Both models presented with an increase in atrial mass, but displayed distinct functional, cellular, histological and molecular phenotypes. Atrial enlargement in the DCM-dnPI3K Tg, but not IGF1R Tg, was associated with atrial dysfunction, fibrosis and a heart failure gene expression pattern. Atrial proteomics identified protein networks related to cardiac contractility, sarcomere assembly, metabolism, mitochondria, and extracellular matrix which were differentially regulated in the models; many co-identified in atrial proteomics data sets from human AF. In summary, physiological and pathological atrial enlargement are associated with distinct features, and the proteomic dataset provides a resource to study potential new regulators of atrial biology and function, drug targets and biomarkers for AF.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Atrios Cardíacos , Ratones Transgénicos , Miocitos Cardíacos , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/genética , Animales , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Modelos Animales de Enfermedad , Fibrosis , Ratones , Humanos , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología
2.
Proteomics ; 21(13-14): e2100026, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33861516

RESUMEN

Cardiac intercellular communication is critical for heart function and often dysregulated in cardiovascular diseases. While cardiac extracellular vesicles (cEVs) are emerging mediators of signalling, their isolation remains a technical challenge hindering our understanding of cEV protein composition. Here, we utilised Langendorff-collagenase-based enzymatic perfusion and differential centrifugation to isolate cEVs from mouse heart (yield 3-6 µg/heart). cEVs are ∼200 nm, express classical EV markers (Cd63/81/9+ , Tsg101+ , Pdcd6ip/Alix+ ), and are depleted of blood (Alb/Fga/Hba) and cardiac damage markers (Mb, Tnnt2, Ldhb). Comparison with mechanically-derived EVs revealed greater detection of EV markers and decreased cardiac damage contaminants. Mass spectrometry-based proteomic profiling revealed 1721 proteins in cEVs, implicated in proteasomal and autophagic proteostasis, glycolysis, and fatty acid metabolism; essential functions often disrupted in cardiac pathologies. There was striking enrichment of 942 proteins in cEVs compared to mouse heart tissue - implicated in EV biogenesis, antioxidant activity, and lipid transport, suggesting active cargo selection and specialised function. Interestingly, cEVs contain marker proteins for cardiomyocytes, cardiac progenitors, B-cells, T-cells, macrophages, smooth muscle cells, endothelial cells, and cardiac fibroblasts, suggesting diverse cellular origin. We present a method of cEV isolation and provide insight into potential functions, enabling future studies into EV roles in cardiac physiology and disease.


Asunto(s)
Vesículas Extracelulares , Proteoma , Animales , Biomarcadores , Células Endoteliales , Ratones , Proteómica
3.
J Mol Cell Cardiol ; 84: 95-103, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25918049

RESUMEN

The activity of the early signaling enzyme, phospholipase Cß1b (PLCß1b), is selectively elevated in diseased myocardium and activity increases with disease progression. We aimed to establish the contribution of heightened PLCß1b activity to cardiac pathology. PLCß1b, the alternative splice variant, PLCß1a, and a blank virus were expressed in mouse hearts using adeno-associated viral vectors (rAAV6-FLAG-PLCß1b, rAAV6-FLAG-PLCß1a, or rAAV6-blank) delivered intravenously (IV). Following viral delivery, FLAG-PLCß1b was expressed in all of the chambers of the mouse heart and was localized to the sarcolemma. Heightened PLCß1b expression caused a rapid loss of contractility, 4-6 weeks, that was fully reversed, within 5 days, by inhibition of protein kinase Cα (PKCα). PLCß1a did not localize to the sarcolemma and did not affect contractile function. Expression of PLCß1b, but not PLCß1a, caused downstream dephosphorylation of phospholamban and depletion of the Ca(2+) stores of the sarcoplasmic reticulum. We conclude that heightened PLCß1b activity observed in diseased myocardium contributes to pathology by PKCα-mediated contractile dysfunction. PLCß1b is a cardiac-specific signaling system, and thus provides a potential therapeutic target for the development of well-tolerated inotropic agents for use in failing myocardium.


Asunto(s)
Empalme Alternativo/genética , Corazón/fisiopatología , Contracción Miocárdica , Fosfolipasa C beta/genética , Administración Intravenosa , Empalme Alternativo/efectos de los fármacos , Animales , Proteínas de Unión al Calcio/metabolismo , Dependovirus/metabolismo , Fibrosis , Corazón/efectos de los fármacos , Hemodinámica/efectos de los fármacos , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Ratones Endogámicos C57BL , Contracción Miocárdica/efectos de los fármacos , Miocardio/enzimología , Miocardio/patología , Fosforilación/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Ultrasonografía
4.
Biochem Biophys Res Commun ; 461(3): 519-24, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25911318

RESUMEN

Phospholipase Cß1b (PLCß1b) is an atypical splice variant of PLCß1 that has a C-terminal proline-rich sequence instead of the PDZ-interacting motif common to other PLCß subtypes. PLCß1b targets to the cardiomyocyte sarcolemma through an undefined association with the scaffolding protein Shank3. The C-terminal splice variant specific sequence of PLCß1b bound to deletion mutants of Shank3 that included the SH3 domain, but not to constructs lacking this domain. Mutating proline residues in the extreme C-terminal region of PLCß1b prevented the interaction between PLCß1b and Shank3 resulting in reduced sarcolemmal localization and downstream signalling responses. We conclude that PLCß1b activation and downstream signalling require the association of a previously unidentified C-terminal proline-rich motif with the SH3 domain of Shank3. PLCß1b is the first confirmed protein ligand for the SH3 domain of Shank3.


Asunto(s)
Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfolipasa C beta/metabolismo , Dominios Homologos src , Animales , Sitios de Unión , Activación Enzimática , Miocitos Cardíacos/enzimología
5.
Mol Pharmacol ; 86(4): 399-405, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25049082

RESUMEN

Cardiomyocyte hypertrophy requires a source of Ca(2+) distinct from the Ca(2+) that regulates contraction. The canonical transient receptor potential channel (TrpC) family, a family of cation channels regulated by activation of phospholipase C (PLC), has been implicated in this response. Cardiomyocyte hypertrophy downstream of Gq-coupled receptors is mediated specifically by PLCß1b that is scaffolded onto a SH3 and ankyrin repeat protein 3 (Shank3) complex at the sarcolemma. TrpC4 exists as two splice variants (TrpC4α and TrpC4ß) that differ only in an 84-residue sequence that binds to phosphatidylinositol(4,5)bisphosphate (PIP2), the substrate of PLCß1b. In neonatal rat cardiomyocytes, TrpC4α, but not TrpC4ß, coimmunoprecipitated with both PLCß1b and Shank3. Heightened PLCß1b expression caused TrpC4α, but not TrpC4ß, translocation to the sarcolemma, where it colocalized with PLCß1b. When overexpressed in cardiomyocytes, TrpC4α, but not TrpC4ß, increased cell area (893 ± 18 to 1497 ± 29 mm(2), P < 0.01) and marker gene expression (atrial natriuretic peptide increased by 409 ± 32%, and modulatory calcineurin inhibitory protein 1 by 315 ± 28%, P < 0.01). Dominant-negative TrpC4 reduced hypertrophy initiated by PLCß1b, or PLCß1b-coupled receptor activation, by 72 ± 8% and 39 ± 5 %, respectively. We conclude that TrpC4α is selectively involved in mechanisms downstream of PLCß1b culminating in cardiomyocyte hypertrophy, and that the hypertrophic response is dependent on the TrpC4α splice variant-specific sequence that binds to PIP2.


Asunto(s)
Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Femenino , Masculino , Mutación , Proteínas del Tejido Nervioso/metabolismo , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Sarcolema/metabolismo , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/genética
6.
J Mol Cell Cardiol ; 54: 19-24, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23137780

RESUMEN

Autophagy is a process that removes damaged proteins and organelles and is of particular importance in terminally differentiated cells such as cardiomyocytes, where it has primarily a protective role. We investigated the involvement of inositol(1,4,5)trisphosphate (Ins(1,4,5)P(3)) and its receptors in autophagic responses in neonatal rat ventricular myocytes (NRVM). Treatment with the IP(3)-receptor (IP(3)-R) antagonist 2-aminoethoxydiphenyl borate (2-APB) at 5 or 20 µmol/L resulted in an increase in autophagosome content, defined as puncta labeled by antibody to microtubule associated light chain 3 (LC3). 2-APB also increased autophagic flux, indicated by heightened LC3II accumulation, which was further enhanced by bafilomycin (10nmol/L). Expression of Ins(1,4,5)P(3) 5-phosphatase (IP(3)-5-Pase) to deplete Ins(1,4,5)P(3) also increased LC3-labeled puncta and LC3II content, suggesting that Ins(1,4,5)P(3) inhibits autophagy. The IP(3)-R can act as an inhibitory scaffold sequestering the autophagic effector, beclin-1 to its ligand binding domain (LBD). Expression of GFP-IP(3)-R-LBD inhibited autophagic signaling and furthermore, beclin-1 co-immunoprecipitated with the IP(3)-R-LBD. A mutant GFP-IP(3)-R-LBD with reduced ability to bind Ins(1,4,5)P(3) bound beclin-1 and inhibited autophagy similarly to the wild type sequence. These data provide evidence that Ins(1,4,5)P(3) and IP(3)-R act as inhibitors of autophagic responses in cardiomyocytes. By suppressing autophagy, IP(3)-R may contribute to cardiac pathology.


Asunto(s)
Autofagia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/fisiología , Miocitos Cardíacos/fisiología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Beclina-1 , Sitios de Unión , Compuestos de Boro/farmacología , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Factores de Transcripción Forkhead/metabolismo , Ventrículos Cardíacos/citología , Proteínas de Choque Térmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Lisosomas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fagosomas/metabolismo , Fosfatidiletanolaminas/fisiología , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , Ratas , Ratas Sprague-Dawley , Proteína Sequestosoma-1 , Transducción de Señal
7.
FASEB J ; 26(2): 596-603, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22012123

RESUMEN

Activation of the heterotrimeric G protein, Gq, causes cardiomyocyte hypertrophy in vivo and in cell models. Responses to activated Gq in cardiomyocytes are mediated exclusively by phospholipase Cß1b (PLCß1b), because it localizes at the sarcolemma by binding to Shank3, a high-molecular-weight (MW) scaffolding protein. Shank3 can bind to the Homer family of low-MW scaffolding proteins that fine tune Ca(2+) signaling by facilitating crosstalk between Ca(2+) channels at the cell surface with those on intracellular Ca(2+) stores. Activation of α(1)-adrenergic receptors, expression of constitutively active Gαq (GαqQL), or PLCß1b initiated cardiomyocyte hypertrophy and increased Homer 1c mRNA expression, by 1.6 ± 0.18-, 1.9 ± 0.17-, and 1.5 ± 0.07-fold, respectively (means ± se, 6 independent experiments, P<0.05). Expression of Homer 1c induced an increase in cardiomyocyte area from 853 ± 27 to 1146 ± 31 µm(2) (P<0.05); furthermore, expression of dominant-negative Homer (Homer 1a) reversed the increase in cell size caused by α(1)-adrenergic agonist or PLCß1b treatment (1503±48 to 996±28 and 1626±48 to 828±31 µm(2), respectively, P<0.05). Homer proteins were localized near the sarcolemma, associated with Shank3 and phospholipase Cß1b. We conclude that Gq-mediated hypertrophy involves activation of PLCß1b scaffolded onto a Shank3/Homer complex. Signaling downstream of Homer 1c is necessary and sufficient for Gq-initiated hypertrophy.


Asunto(s)
Proteínas Portadoras/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Señalización del Calcio , Proteínas Portadoras/genética , Aumento de la Célula , Técnicas de Silenciamiento del Gen , Proteínas de Andamiaje Homer , Técnicas In Vitro , Modelos Cardiovasculares , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso , Fosfolipasa C beta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Sarcolema/metabolismo , Transducción de Señal
8.
FASEB J ; 25(3): 1040-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21148417

RESUMEN

Activation of the heterotrimeric G protein Gq causes cardiomyocyte hypertrophy in vivo and in cell models. Our previous studies have shown that responses to activated Gq in cardiomyocytes are mediated exclusively by phospholipase Cß1b (PLCß1b), because only this PLCß subtype localizes at the cardiac sarcolemma. In the current study, we investigated the proteins involved in targeting PLCß1b to the sarcolemma in neonatal rat cardiomyocytes. PLCß1b, but not PLCß1a, coimmunoprecipitated with the high-MW scaffolding protein SH3 and ankyrin repeat protein 3 (Shank3), as well as the known Shank3-interacting protein α-fodrin. The 32-aa splice-variant-specific C-terminal tail of PLCß1b also associated with Shank3 and α-fodrin, indicating that PLCß1b binds via the C-terminal sequence. Shank3 colocalized with PLCß1b at the sarcolemma, and both proteins were enriched in the light membrane fractions. Knockdown of Shank3 using siRNA reduced PLC activation and downstream hypertrophic responses, demonstrating the importance of sarcolemmal localization for PLC signaling. These data indicate that PLCß1b associates with a Shank3 complex at the cardiac sarcolemma via its splice-variant-specific C-terminal tail. Sarcolemmmal localization is central to PLC activation and subsequent downstream signaling following Gq-coupled receptor activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Empalme Alternativo/fisiología , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Fosfolipasa C beta/metabolismo , Sarcolema/enzimología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Cardiomegalia/metabolismo , Cardiotónicos/farmacología , Proteínas Portadoras/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Microdominios de Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Proteínas del Tejido Nervioso , Fenilefrina/farmacología , Fosfolipasa C beta/química , Fosfolipasa C beta/genética , Estructura Terciaria de Proteína , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Dominios Homologos src/fisiología
9.
FASEB J ; 23(10): 3564-70, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19564249

RESUMEN

Activation of the heterotrimeric G protein Gq causes cardiomyocyte hypertrophy in vivo and in cell culture models. Hypertrophic responses induced by pressure or volume overload are exacerbated by increased Gq activity and ameliorated by Gq inhibition. Gq activates phospholipase Cbeta (PLCbeta) subtypes, resulting in generation of the intracellular messengers inositol(1,4,5)tris-phosphate [Ins(1,4,5)P(3)] and sn-1,2-diacylglycerol (DAG), which regulate intracellular Ca(2+) and conventional protein kinase C subtypes, respectively. Gq can also signal independently of PLCbeta, and the involvement of either Ins(1,4,5)P(3) or DAG in cardiomyocyte hypertrophy has not been unequivocally established. Overexpression of one splice variant of PLCbeta1, specifically PLCbeta1b, in neonatal rat cardiomyocytes causes increased cell size, elevated protein/DNA ratio, and heightened expression of the hypertrophy-related marker gene, atrial natriuretic peptide. The other splice variant, PLCbeta1a, had no effect. Expression of a 32-aa C-terminal PLCbeta1b peptide, which competes with PLCbeta1b for sarcolemmal association, prevented PLC activation and eliminated hypertrophic responses initiated by Gq or Gq-coupled alpha(1)-adrenergic receptors. In contrast, a PLCbeta1a C-terminal peptide altered neither PLC activity nor cellular hypertrophy. We conclude that hypertrophic responses initiated by Gq are mediated specifically by PLCbeta1b. Preventing PLCbeta1b association with the sarcolemma may provide a useful therapeutic target to limit hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/biosíntesis , Miocitos Cardíacos/enzimología , Fosfolipasa C beta/biosíntesis , Receptores Adrenérgicos alfa 1/biosíntesis , Agonistas de Receptores Adrenérgicos alfa 1 , Animales , Cardiomegalia/patología , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Miocitos Cardíacos/patología , Fosfolipasa C beta/genética , Ratas , Ratas Sprague-Dawley
10.
J Mol Cell Cardiol ; 47(5): 676-83, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19729020

RESUMEN

Atrial fibrillation (AF) is commonly associated with chronic dilatation of the left atrium, both in human disease and animal models. The immediate signaling enzyme phospholipase C (PLC) is activated by mechanical stretch to generate the Ca2+-releasing messenger inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) and sn-1,2-diacylglycerol (DAG), an activator of protein kinase C subtypes. There is also evidence that heightened activity of PLC, caused by the receptor coupling protein Gq, can contribute to atrial remodelling. We examined PLC activation in right and left atrial appendage from patients with mitral valve disease (VHD) and in a mouse model of dilated cardiomyopathy caused by transgenic overexpression of the stress-activated protein kinase, mammalian sterile 20 like kinase 1 (Mst1) (Mst1-TG). PLC activation was heightened 6- to 10-fold in atria from VHD patients compared with right atrial tissue from patients undergoing coronary artery bypass surgery (CABG) and was also heightened in the dilated atria from Mst1-TG. PLC activation in human left atrial appendage and in mouse left atria correlated with left atrial size, implying a relationship between PLC activation and chronic dilatation. Dilated atria from human and mouse showed heightened expression of PLCbeta1b, but not of other PLC subtypes. PLCbeta1b, but not PLCbeta1a, caused apoptosis when overexpressed in neonatal rat cardiomyocytes, suggesting that PLCbeta1b may contribute to chamber dilatation. The activation of PLCbeta1b is a possible therapeutic target to limit atrial remodelling in VHD patients.


Asunto(s)
Cardiomiopatía Dilatada/enzimología , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fosfolipasa C beta/fisiología , Animales , Animales Recién Nacidos , Apéndice Atrial/metabolismo , Apéndice Atrial/patología , Fibrilación Atrial/enzimología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/patología , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Células Cultivadas , Modelos Animales de Enfermedad , Atrios Cardíacos , Humanos , Técnicas In Vitro , Ratones , Insuficiencia de la Válvula Mitral/enzimología , Insuficiencia de la Válvula Mitral/patología , Miocitos Cardíacos/metabolismo , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Transducción de Señal/fisiología
11.
J Mol Cell Cardiol ; 45(5): 679-84, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18692062

RESUMEN

The functional significance of the Ca2+-releasing second messenger inositol(1,4,5)trisphosphate (Ins(1,4,5)P(3), IP(3)) in the heart has been controversial. Ins(1,4,5)P(3) is generated from the precursor lipid phosphatidylinositol(4,5)bisphosphate (PIP(2)) along with sn-1,2-diacylglycerol, and both of these are important cardiac effectors. Therefore, to evaluate the functional importance of Ins(1,4,5)P(3) in cardiomyocytes (NRVM), we overexpressed IP(3) 5-phosphatase to increase degradation. Overexpression of IP(3) 5-phosphatase reduced Ins(1,4,5)P(3) responses to alpha(1)-adrenergic receptor agonists acutely, but with longer stimulation, caused an overall increase in phospholipase C (PLC) activity, associated with a selective increase in expression of PLCbeta1, that served to normalise Ins(1,4,5)P(3) content. Similar increases in PLC activity and PLCbeta1 expression were observed when Ins(1,4,5)P(3) was sequestered onto the PH domain of PLCdelta1, a high affinity selective Ins(1,4,5)P(3)-binding motif. These findings suggested that the available level of Ins(1,4,5)P(3) selectively regulates the expression of PLCbeta1. Cardiac responses to Ins(1,4,5)P(3) are mediated by type 2 IP(3)-receptors. Hearts from IP(3)-receptor (type 2) knock-out mice showed heightened PLCbeta1 expression. We conclude that Ins(1,4,5)P(3) and IP(3)-receptor (type 2) regulate PLCbeta1 and thereby maintain levels of Ins(1,4,5)P(3). This implies some functional significance for Ins(1,4,5)P(3) in the heart.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Inositol 1,4,5-Trifosfato/metabolismo , Miocitos Cardíacos/enzimología , Fosfolipasa C beta/biosíntesis , Adenoviridae/genética , Animales , Animales Recién Nacidos , Ventrículos Cardíacos/citología , Humanos , Inositol 1,4,5-Trifosfato/biosíntesis , Ratones , Ratones Noqueados , Células Musculares/metabolismo , Fosfolipasa C beta/fisiología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Cancer Epidemiol Biomarkers Prev ; 16(11): 2276-84, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18006916

RESUMEN

BACKGROUND AND OBJECTIVE: Genetic testing for germ line mutations in the BRCA1 and BRCA2 genes for some families at high risk for breast and/or ovarian cancer may yield negative results due to unidentified mutations or mutations with unknown clinical significance. We aimed to accurately determine the prevalence of mutations in these genes in an Asian clinic-based population by using a comprehensive testing strategy. MATERIALS AND METHODS: Ninety-four subjects from 90 families were accrued from risk assessment clinics. In addition to conventional mutational screening of BRCA1 and BRCA2, multiplex ligation-dependent probe amplification for the detection of large genomic rearrangements, evaluation of splice site alterations using transcript analysis and SpliceSiteFinder prediction, and analysis of missense mutations of unknown significance by multiple sequence alignment, PolyPhen analysis, and comparison of Protein Data Bank structures were incorporated into our testing strategy. RESULTS: The prevalence rates for clearly deleterious BRCA1 and BRCA2 mutations were 6.7% (6 of 90) and 8.9% (8 of 90), respectively, or 7.8% (7 of 90) and 11.1% (10 of 90), respectively, by including missense mutations predicted to be deleterious by computational analysis. In contrast to observations from European and American populations, deleterious mutations in BRCA2 (10 families) were more common than for BRCA1 (7 families). Overall, the frequency of mutations was 12.2% (n=11) by conventional screening. However, by including deleterious mutations detected using multiplex ligation-dependent probe amplification (n=1), transcript analysis (n=2), and computational evaluation of missense mutations (n=3), the frequency increased substantially to 18.9%. This suggests that the comprehensive strategy used is effective for identifying deleterious mutations in Asian individuals at high risk for breast and/or ovarian cancer.


Asunto(s)
Neoplasias de la Mama/genética , Genes BRCA1 , Genes BRCA2 , Mutación de Línea Germinal , Neoplasias Ováricas/genética , Adulto , Anciano , Animales , Pueblo Asiatico/genética , Secuencia de Bases , Femenino , Predisposición Genética a la Enfermedad , Humanos , Persona de Mediana Edad , Datos de Secuencia Molecular , Mutación Missense
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA