Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 671, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970011

RESUMEN

BACKGROUND: The dirigent (DIR) genes encode proteins that act as crucial regulators of plant lignin biosynthesis. In Solanaceae species, members of the DIR gene family are intricately related to plant growth and development, playing a key role in responding to various biotic and abiotic stresses. It will be of great application significance to analyze the DIR gene family and expression profile under various pathogen stresses in Solanaceae species. RESULTS: A total of 57 tobacco NtDIRs and 33 potato StDIRs were identified based on their respective genome sequences. Phylogenetic analysis of DIR genes in tobacco, potato, eggplant and Arabidopsis thaliana revealed three distinct subgroups (DIR-a, DIR-b/d and DIR-e). Gene structure and conserved motif analysis showed that a high degree of conservation in both exon/intron organization and protein motifs among tobacco and potato DIR genes, especially within members of the same subfamily. Total 8 pairs of tandem duplication genes (3 pairs in tobacco, 5 pairs in potato) and 13 pairs of segmental duplication genes (6 pairs in tobacco, 7 pairs in potato) were identified based on the analysis of gene duplication events. Cis-regulatory elements of the DIR promoters participated in hormone response, stress responses, circadian control, endosperm expression, and meristem expression. Transcriptomic data analysis under biotic stress revealed diverse response patterns among DIR gene family members to pathogens, indicating their functional divergence. After 96 h post-inoculation with Ralstonia solanacearum L. (Ras), tobacco seedlings exhibited typical symptoms of tobacco bacterial wilt. The qRT-PCR analysis of 11 selected NtDIR genes displayed differential expression pattern in response to the bacterial pathogen Ras infection. Using line 392278 of potato as material, typical symptoms of potato late blight manifested on the seedling leaves under Phytophthora infestans infection. The qRT-PCR analysis of 5 selected StDIR genes showed up-regulation in response to pathogen infection. Notably, three clustered genes (NtDIR2, NtDIR4, StDIR3) exhibited a robust response to pathogen infection, highlighting their essential roles in disease resistance. CONCLUSION: The genome-wide identification, evolutionary analysis, and expression profiling of DIR genes in response to various pathogen infection in tobacco and potato have provided valuable insights into the roles of these genes under various stress conditions. Our results could provide a basis for further functional analysis of the DIR gene family under pathogen infection conditions.


Asunto(s)
Evolución Molecular , Familia de Multigenes , Nicotiana , Filogenia , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/microbiología , Nicotiana/genética , Nicotiana/microbiología , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Estrés Fisiológico/genética , Regiones Promotoras Genéticas , Duplicación de Gen , Ralstonia solanacearum , Genes de Plantas
2.
Small ; 20(20): e2308212, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100280

RESUMEN

The FeOOH/Zn(OH)2/CoS (FZC) nanocomposites are synthesized and show the outstanding electrochemical properties in both supercapacitor and catalytic hydrogen production. The specific area capacitance reaches 17.04 F cm-2, which is more than ten times higher than that of FeOOH/Zn(OH)2 (FZ) substrate: 1.58 F cm-2). FZC nanocomposites also exhibit the excellent cycling stability with an initial capacity retention rate of 93.6% after 10 000 long-term cycles. The electrolytic cell (FZC//FZC) assembled with FZC as both anode and cathode in the UOR (urea oxidation reaction)|| HER (hydrogen evolution reaction) coupled system requires a cell voltage of only 1.453 V to drive a current density of 10 mA cm-2. Especially, the electrochemical performances of FZC nanocomposites are enhanced in magnetic field, and the mechanism is proposed based on Stern double layer model at electrode-electrolyte interface (EEI). More electrolyte ions reach the surface of FZC electrode material under Kelvin force, moreover, the warburg impedance of FZC nanocomposites decrease under magnetic field action, which results in the enhanced behaviors for both the energy storage and urea oxidation reaction .

3.
Small ; : e2400252, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461522

RESUMEN

Owing to the high economic efficiency and energy density potential, manganese-based layer-structured oxides have attracted great interests as cathode materials for potassium ion batteries. In order to alleviate the continuous phase transition and K+ re-embedding from Jahn-Teller distortion, the [Mn-Co-Mo]O6 octahedra are introduced into P3-K0.45 MnO2 herein to optimize the local electron structure. Based on the experimental and computational results, the octahedral center metal molybdenum in [MoO6 ] octahedra proposes a smaller ionic radius and higher oxidation state to induce second-order JTE (pseudo-JTE) distortion in the adjacent [MnO6 ] octahedra. This distortion compresses the [MnO6 ] octahedra along the c-axis, leading to an increased interlayer spacing in the K+ layer. Meanwhile, the Mn3+ /Mn4+ is balanced by [CoO6 ] octahedra and the K+ diffusion pathway is optimized as well. The proposed P3-K0.45 Mn0.9 Co0.05 Mo0.05 O2 cathode material shows an enhanced cycling stability and rate performance. It demonstrates a high capacity of 80.2 mAh g-1 at 100 mAh g-1 and 77.3 mAh g-1 at 500 mAh g-1 . Furthermore, it showcases a 2000 cycles stability with a 59.6% capacity retention. This work presents a promising solution to the challenges faced by manganese-based layered oxide cathodes and offers a deep mechanism understanding and improved electrochemical performance.

4.
Plant Dis ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687907

RESUMEN

Blackleg and soft rot are harmful diseases in potato (Solanum tuberosum) caused by Pectobacterium spp. and Dickeya spp. (Czajkowski et al. 2015). The occurrence of potato blackleg was serious in potato-producing areas around Xiapu County in Fujian Province, China, in 2021 (6 ha) and 2022 (7 ha), with an incidence of approximately 5%, which reached nearly 23%. Three diseased plants were collected to isolate the pathogen. Single colonies from each sampled plant were isolated and streaked onto fresh plates. DNA from three colonies from different plants was PCR amplified with primer pair 27F/1492R (Lane 1991) for the 16S rRNA gene. Since the sequences were identical, we selected strain M2-3 for further analysis. The strain M2-3 was gram-negative, pectolytic on CVP, grew at 37°C and 5% NaCl. The bacterium was positive for phosphatase activity, erythromycin sensitivity, indole production, gelatin liquefaction, malonic utilization, and acid production from, melibiose, raffinose, and arabinose. The bacterium was negative for sucrose, α-methyl glucoside, sorbitol, trehalose, lactose, and sodium citrate (Fujimoto et al. 2018;),although sucrose and lactose did not provide the expected results, there are exception in all species. The genome of strain M2-3 was sequenced and deposited in the NCBI database under accession numbers: CP077422. An Average Nucleotide Identity (ANI) analysis showed that M2-3 clustered with other D. dadantii strains and has a 98.39% identity with D. dadantii strain DSM 18020 (CP023467). The housekeeping genes (recA, dnaX, acnA, gapA, icd, mdh, mtlD and pgi) were amplified with primer pairs designed previously(Fujimoto et al. 2018; Ma et al. 2007) and sequenced. A multilocus sequence analysis (MLSA) was performed by concatenating the 8 gene sequences and constructing a maximum likelihood phylogenetic tree using PhyloSuite version 1.2.1 (Zhang et al. 2020) and IQ-tree version 1.6.8 (Nguyen et al. 2015) software. Strain M2-3 was clustered together with Dickeya dadantii. For the pathogenicity test, three plants per treatment, totaling nine plants, were used. Bacterial suspensions (1×10^8 CFU/mL) were made in a 10mM PBS buffer. 10 µL of M2-3, D. dadantii type strain 18020 (positive control), and buffer (negative control) were injected into the plant stems near the base. Water stains appeared at the site of inoculation after 2 days and they gradually became black and rotten. The leaves became yellow and wilted, and the petiole base rotted within 5 days of inoculation completing the Koch postulate. According to average nucleotide identity and housekeeping gene sequence analysis, strain M2-3 was identified as Dickeya dadantii. Previous studies have reported several pathogens that cause potato blackleg in China, including P. atrosepticum, P. carotovorum, P. brasiliense, P. parmentieri, P. polaris, and P. punjabense (Li-ping et al. 2020; Wang et al. 2021). To the best of our knowledge, this study is the first to report potato blackleg disease caused by Dickeya dadantii in Fujian Province, China. This finding suggests that this pathogen may cause a threat to potato production in Fujian Province.

5.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931003

RESUMEN

MnO has attracted much attention as the anode for Li-ion batteries (LIBs) owing to its high specific capacity. However, the low conductivity limited its large application. An effective solution to solve this problem is carbon coating. Biomass carbon materials have aroused much interest for being low-cost and rich in functional groups and hetero atoms. This work designs porous N-containing MnO composites based on the chemical-activated tremella using a self-templated method. The tremella, after activation, could offer more active sites for carbon to coordinate with the Mn ions. And the as-prepared composites could also inherit the special porous nanostructures of the tremella, which is beneficial for Li+ transfer. Moreover, the pyrrolic/pyridinic N from the tremella can further improve the conductivity and the electrolyte wettability of the composites. Finally, the composites show a high reversible specific capacity of 1000 mAh g-1 with 98% capacity retention after 200 cycles at 100 mA g-1. They also displayed excellent long-cycle performance with 99% capacity retention (relative to the capacity second cycle) after long 1000 cycles under high current density, which is higher than in most reported transition metal oxide anodes. Above all, this study put forward an efficient and convenient strategy based on the low-cost biomass to construct N-containing porous composite anodes with a fast Li+ diffusion rate, high electronic conductivity, and outstanding structure stability.

6.
Clin Sci (Lond) ; 137(17): 1391-1407, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37622333

RESUMEN

Exercise has been recommended as a nonpharmaceutical therapy to treat insulin resistance (IR). Previous studies showed that dopamine D1-like receptor agonists, such as fenoldopam, could improve peripheral insulin sensitivity, while antipsychotics, which are dopamine receptor antagonists, increased susceptibility to Type 2 diabetes mellitus (T2DM). Meanwhile, exercise has been proved to stimulate dopamine receptors. However, whether the dopamine D1 receptor (D1R) is involved in exercise-mediated amelioration of IR remains unclear. We found that the D1-like receptor antagonist, SCH23390, reduced the effect of exercise on lowering blood glucose and insulin in insulin-resistant mice and inhibited the contraction-induced glucose uptake in C2C12 myotubes. Similarly, the opposite was true for the D1-like receptor agonist, fenoldopam. Furthermore, the expression of D1R was decreased in skeletal muscles from streptozotocin (STZ)- and high-fat intake-induced T2DM mice, accompanied by increased D1R phosphorylation, which was reversed by exercise. A screening study showed that G protein-coupled receptor kinase 4 (GRK4) may be the candidate kinase for the regulation of D1R function, because, in addition to the increased GRK4 expression in skeletal muscles of T2DM mice, GRK4 transgenic T2DM mice exhibited lower insulin sensitivity, accompanied by higher D1R phosphorylation than control mice, whereas the AAV9-shGRK4 mice were much more sensitive to insulin than AAV9-null mice. Mechanistically, the up-regulation of GRK4 expression caused by increased reactive oxygen species (ROS) in IR was ascribed to the enhanced expression of c-Myc, a transcriptional factor of GRK4. Taken together, the present study shows that exercise, via regulation of ROS/c-Myc/GRK4 pathway, ameliorates D1R dysfunction and improves insulin sensitivity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Animales , Ratones , Fenoldopam , Insulina , Músculo Esquelético , Especies Reactivas de Oxígeno , Receptores de Dopamina D1/genética
7.
J Magn Reson Imaging ; 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38006286

RESUMEN

BACKGROUND: Previous studies have used different imaging sequences and different enhanced phases for breast lesion calsification in radiomics. The optimal sequence and contrast enhanced phase is unclear. PURPOSE: To identify the optimal magnetic resonance imaging (MRI) radiomics model for lesion clarification, and to simulate its incremental value for multiparametric MRI (mpMRI)-guided biopsy. STUDY TYPE: Retrospective. POPULATION: 329 female patients (138 malignant, 191 benign), divided into a training set (first site, n = 192) and an independent test set (second site, n = 137). FIELD STRENGTH/SEQUENCE: 3.0-T, fast spoiled gradient-echo and fast spin-echo T1-weighted imaging (T1WI), fast spin-echo T2-weighted imaging (T2WI), echo-planar diffusion-weighted imaging (DWI), and fast spoiled gradient-echo contrast-enhanced MRI (CE-MRI). ASSESSMENT: Two breast radiologists with 3 and 10 years' experience developed radiomics model on CE-MRI, CE-MRI + DWI, CE-MRI + DWI + T2WI, CE-MRI + DWI + T2WI + T1WI at each individual phase (P) and for multiple combinations of phases. The optimal radiomics model (Rad-score) was identified as having the highest area under the receiver operating characteristic curve (AUC) in the test set. Specificity was compared between a traditional mpMRI model and an integrated model (mpMRI + Rad-score) at sensitivity >98%. STATISTICAL TESTS: Wilcoxon paired-samples signed rank test, Delong test, McNemar test. Significance level was 0.05 and Bonferroni method was used for multiple comparisons (P = 0.007, 0.05/7). RESULTS: For radiomics models, CE-MRI/P3 + DWI + T2WI achieved the highest performance in the test set (AUC = 0.888, 95% confidence interval: 0.833-0.944). The integrated model had significantly higher specificity (55.3%) than the mpMRI model (31.6%) in the test set with a sensitivity of 98.4%. DATA CONCLUSION: The CE-MRI/P3 + DWI + T2WI model is the optimized choice for breast lesion classification in radiomics, and has potential to reduce benign biopsies (100%-specificity) from 68.4% to 44.7% while retaining sensitivity >98%. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

8.
Plant Dis ; 107(7): 2201-2204, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36510425

RESUMEN

The Pectobacterium pathogens cause soft rot and blackleg diseases on many plants and crops, including potatoes. Here, we first report a high-quality genome assembly and announcement of the P. polaris strain QK413-1, which causes blackleg disease in potatoes in China. The QK413-1 genome was sequenced and assembled using the PacBio Sequel II and Illumina sequencing platform. The assembled genome has a total size of 5,005,507 bp with a GC content of 51.81%, encoding 4,782 open reading frames, including 639 virulence genes, 273 drug resistance genes, and 416 secreted proteins. The QK413-1 genome sequence provides a valuable resource for the control of potato blackleg and research into its mechanism.


Asunto(s)
Pectobacterium , Solanum tuberosum , Solanum tuberosum/microbiología , Enfermedades de las Plantas/microbiología , Pectobacterium/genética , Plantas
9.
Sensors (Basel) ; 23(18)2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37765939

RESUMEN

Due to the environmental protection of electric buses, they are gradually replacing traditional fuel buses. Several previous studies have found that accidents related to electric vehicles are linked to Unintended Acceleration (UA), which is mostly caused by the driver pressing the wrong pedal. Therefore, this study proposed a Model for Detecting Pedal Misapplication in Electric Buses (MDPMEB). In this work, natural driving experiments for urban electric buses and pedal misapplication simulation experiments were carried out in a closed field; furthermore, a phase space reconstruction method was introduced, based on chaos theory, to map sequence data to a high-dimensional space in order to produce normal braking and pedal misapplication image datasets. Based on these findings, a modified Swin Transformer network was built. To prevent the model from overfitting when considering small sample data and to improve the generalization ability of the model, it was pre-trained using a publicly available dataset; moreover, the weights of the prior knowledge model were loaded into the model for training. The proposed model was also compared to machine learning and Convolutional Neural Networks (CNN) algorithms. This study showed that this model was able to detect normal braking and pedal misapplication behavior accurately and quickly, and the accuracy rate on the test dataset is 97.58%, which is 9.17% and 4.5% higher than the machine learning algorithm and CNN algorithm, respectively.

10.
Appl Opt ; 61(3): 812-817, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35200788

RESUMEN

Spectral filtering is essential in daytime quantum key distribution (QKD), which can suppress the strong background noise caused by scattered solar irradiation. An integrated Fabry-Perot filter is implemented based on a scheme that combines a Fabry-Perot etalon and a dense-wavelength-division-multiplex filter for narrow linewidth filtering and broad-spectrum noise suppression, respectively. This filter is integrated into a butterfly package with single-mode fibers for optical input and output, thereby enhancing high robustness and ease of use. The measurement results show that the filter has a linewidth of 25.6 pm, a noise suppression of over 44.7 dB ranging between 1380-1760 nm, an optical efficiency of 74.5% with variation less than 0.9% in 120 min, and a polarization fidelity after compensation exceeding 99.9%. The ability of fine-tuning the central wavelength with 9.5 pm/°C makes it very suitable for satellite-based applications under the Doppler effect. Further analysis is also given to demonstrate the prospects of applying this filter in future satellite-based daytime QKD applications.

11.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613728

RESUMEN

Due to its wide source and low cost, biomass-based hard carbon is considered a valuable anode for lithium-ion batteries (LIBs). Lignins, as the second most abundant source in nature, are being intensively studied as candidate anode materials for next generation LIBs. However, direct carbonization of pure lignin usually leads to low specific surface area and porosity. In this paper, we design a porous carbon material from natural lignin assisted by sacrificing a metal-organic framework (MOF) as the template. The MOF nanoparticles can disperse the lignin particles uniformly and form abundant mesopores in the composites to offer fast transfer channels for Li+. The as-prepared carbon anode shows a high specific capacity of 420 mAh g-1 with the capacity retention of 99% after 300 cycles at 0.2 A g-1. Additionally, it keeps the capacity retention of 85% after long cycle of 1000 cycles, indicating the good application value of the designed anode in LIBs. The work provides a renewable and low-cost candidate anode and a feasible design strategy of the anode materials for LIBs.


Asunto(s)
Lignina , Estructuras Metalorgánicas , Litio , Biomasa , Carbono , Electrodos , Iones
12.
Molecules ; 27(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35630768

RESUMEN

Polyphenolic acids are the widely occurring natural products in almost each herbal plant, among which rosmarinic acid (RA, C18H16O8) is well-known, and is present in over 160 species belonging to many families, especially the Lamiaceae. Aside from this herbal ingredient, dozens of its natural derivatives have also been isolated and characterized from many natural plants. In recent years, with the increasing focus on the natural products as alternative treatments, a large number of pharmacological studies have been carried out to demonstrate the various biological activities of RA such as anti-inflammation, anti-oxidation, anti-diabetes, anti-virus, anti-tumor, neuroprotection, hepatoprotection, etc. In addition, investigations concerning its biosynthesis, extraction, analysis, clinical applications, and pharmacokinetics have also been performed. Although many achievements have been made in various research aspects, there still exist some problems or issues to be answered, especially its toxicity and bioavailability. Thus, we hope that in the case of natural products, the present review can not only provide a comprehensive understanding on RA covering its miscellaneous research fields, but also highlight some of the present issues and future perspectives worth investigating later, in order to help us utilize this polyphenolic acid more efficiently, widely, and safely.


Asunto(s)
Lamiaceae , Extractos Vegetales , Cinamatos/química , Cinamatos/farmacología , Depsidos/química , Depsidos/farmacología , Humanos , Extractos Vegetales/química , Ácido Rosmarínico
13.
Eur J Nucl Med Mol Imaging ; 48(11): 3493-3501, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33829416

RESUMEN

PURPOSE: Renal fibrosis is a pathological state in the progression of chronic kidney disease. Early detection and treatment are vital to prolonging patient survival. Renal puncture examination is the gold standard for renal fibrosis, but it has several limitations. This study aims to evaluate the diagnostic performance of a novel PET radiotracer, [68Ga]Ga-fibroblast activation protein inhibitor (FAPI)-04, which specifically images fibroblast activation protein (FAP) expression for renal fibrosis. METHODS: All patients underwent renal puncture before receiving [68Ga]Ga-FAPI-04 PET/CT imaging. They then underwent [68Ga]Ga-FAPI-04 PET/CT and immunochemistry examinations. The data obtained were analyzed. RESULTS: The [68Ga]Ga-FAPI-04 PET/CT examination results demonstrated that almost all patients (12/13) exhibited increased radiotracer uptake. The maximum standardized uptake value (SUVmax) in patients with mild, moderate, and severe fibrosis was 3.92 ± 1.50, 5.98 ± 1.6, and 7.67 ± 2.23, respectively. CONCLUSION: Compared with renal puncture examination, non-invasive imaging of FAP expression through [68Ga]Ga-FAPI-04 PET/CT quickly demonstrates bilateral kidney conditions with high sensitivity. [68Ga]Ga-FAPI-04 PET/CT can facilitate the evaluation of disease progression, diagnosis, and the development of a treatment plan.


Asunto(s)
Radioisótopos de Galio , Quinolinas , Fibrosis , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones
14.
Neuroimage ; 217: 116831, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32438048

RESUMEN

Brain age prediction models using diffusion magnetic resonance imaging (dMRI) and machine learning techniques enable individual assessment of brain aging status in healthy people and patients with brain disorders. However, dMRI data are notorious for high intersite variability, prohibiting direct application of a model to the datasets obtained from other sites. In this study, we generalized the dMRI-based brain age model to different dMRI datasets acquired under different imaging conditions. Specifically, we adopted a transfer learning approach to achieve domain adaptation. To evaluate the performance of transferred models, brain age prediction models were constructed using a large dMRI dataset as the source domain, and the models were transferred to three target domains with distinct acquisition scenarios. The experiments were performed to investigate (1) the tuning data size needed to achieve satisfactory performance for brain age prediction, (2) the feature types suitable for different dMRI acquisition scenarios, and (3) performance of the transfer learning approach compared with the statistical covariate approach. By tuning the models with relatively small data size and certain feature types, optimal transferred models were obtained with significantly improved prediction performance in all three target cohorts (p â€‹< â€‹0.001). The mean absolute error of the predicted age was reduced from 13.89 to 4.78 years in Cohort 1, 8.34 to 5.35 years in Cohort 2, and 8.74 to 5.64 years in Cohort 3. The test-retest reliability of the transferred model was verified using dMRI data acquired at two timepoints (intraclass correlation coefficient â€‹= â€‹0.950). Clinical sensitivity of the brain age prediction model was investigated by estimating the brain age in patients with schizophrenia. The prediction made by the transferred model was not significantly different from that made by the reference model. Both models predicted significant brain aging in patients with schizophrenia as compared with healthy controls (p â€‹< â€‹0.001); the predicted age difference of the transferred model was 4.63 and 0.26 years for patients and controls, respectively, and that of the reference model was 4.39 and -0.09 years, respectively. In conclusion, transfer learning approach is an efficient way to generalize the dMRI-based brain age prediction model. Appropriate transfer learning approach and suitable tuning data size should be chosen according to different dMRI acquisition scenarios.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Transferencia de Experiencia en Psicología/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Imagen de Difusión por Resonancia Magnética , Estudios de Factibilidad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Esquizofrenia/diagnóstico por imagen , Psicología del Esquizofrénico , Adulto Joven
15.
Molecules ; 24(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627373

RESUMEN

Sweet potato anthocyanins are water-soluble pigments with many physiological functions. Previous research on anthocyanin accumulation in sweet potato has focused on the roots, but the accumulation progress in the leaves is still unclear. Two purple sweet potato cultivars (Fushu No. 23 and Fushu No. 317) with large quantities of anthocyanin in the leaves were investigated. Anthocyanin composition and content were assessed with ultra-performance liquid chromatography diode-array detection (UPLC-DAD) and ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS), and the expressions of genes were detected by qRT-PCR. The two cultivars contained nine cyanidin anthocyanins and nine peonidin anthocyanins with an acylation modification. The acylation modification of anthocyanins in sweet potato leaves primarily included caffeoyl, p-coumaryl, feruloyl, and p-hydroxy benzoyl. We identified three anthocyanin compounds in sweet potato leaves for the first time: cyanidin 3-p-coumarylsophoroside-5-glucoside, peonidin 3-p-coumarylsophoroside-5-glucoside, and cyanidin 3-caffeoyl-p-coumarylsophoroside-5-glucoside. The anthocyanidin biosynthesis downstream structural genes DFR4, F3H1, anthocyanin synthase (ANS), and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT3), as well as the transcription factor MYB1, were found to be vital regulatory genes during the accumulation of anthocyanins in sweet potato leaves. The composition of anthocyanins (nine cyanidin-based anthocyanins and nine peonidin-based anthocyanins) in all sweet potato leaves were the same, but the quantity of anthocyanins in leaves of sweet potato varied by cultivar and differed from anthocyanin levels in the roots of sweet potatoes. The anthocyanidin biosynthesis structural genes and transcription factor together regulated and controlled the anthocyandin biosynthesis in sweet potato leaves.


Asunto(s)
Antocianinas/biosíntesis , Regulación de la Expresión Génica de las Plantas , Ipomoea batatas/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Acilación , Antocianinas/clasificación , Antocianinas/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Ipomoea batatas/genética , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Sensors (Basel) ; 18(4)2018 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-29565313

RESUMEN

The deployment density and computational power of small base stations (BSs) are expected to increase significantly in the next generation mobile communication networks. These BSs form the mobile edge network, which is a pervasive and distributed infrastructure that can empower a variety of edge/fog computing applications. This paper proposes a novel edge-computing application called explicit caching, which stores selective contents at BSs and exposes such contents to local users for interactive browsing and download. We formulate the explicit caching problem as a joint content recommendation, caching, and delivery problem, which aims to maximize the expected user quality-of-experience (QoE) with varying degrees of cross-layer sensing capability. Optimal and effective heuristic algorithms are presented to solve the problem. The theoretical performance bounds of the explicit caching system are derived in simplified scenarios. The impacts of cache storage space, BS backhaul capacity, cross-layer information, and user mobility on the system performance are simulated and discussed in realistic scenarios. Results suggest that, compared with conventional implicit caching schemes, explicit caching can better exploit the mobile edge network infrastructure for personalized content dissemination.

17.
Med Sci Monit ; 23: 1691-1700, 2017 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-28388595

RESUMEN

BACKGROUND We explored the application of 3-dimensional (3D) printing technology in treating giant cell tumors (GCT) of the proximal tibia. A tibia block was designed and produced through 3D printing technology. We expected that this 3D-printed block would fill the bone defect after en-bloc resection. Importantly, the block, combined with a standard knee joint prosthesis, provided attachments for collateral ligaments of the knee, which can maintain knee stability. MATERIAL AND METHODS A computed tomography (CT) scan was taken of both knee joints in 4 patients with GCT of the proximal tibia. We developed a novel technique - the real-size 3D-printed proximal tibia model - to design preoperative treatment plans. Hence, with the application of 3D printing technology, a customized proximal tibia block could be designed for each patient individually, which fixed the bone defect, combined with standard knee prosthesis. RESULTS In all 4 cases, the 3D-printed block fitted the bone defect precisely. The motion range of the affected knee was 90 degrees on average, and the soft tissue balance and stability of the knee were good. After an average 7-month follow-up, the MSTS score was 19 on average. No sign of prosthesis fracture, loosening, or other relevant complications were detected. CONCLUSIONS This technique can be used to treat GCT of the proximal tibia when it is hard to achieve soft tissue balance after tumor resection. 3D printing technology simplified the design and manufacturing progress of custom-made orthopedic medical instruments. This new surgical technique could be much more widely applied because of 3D printing technology.


Asunto(s)
Artroplastia de Reemplazo de Rodilla/instrumentación , Neoplasias Óseas/cirugía , Tumor Óseo de Células Gigantes/cirugía , Impresión Tridimensional , Diseño de Prótesis/métodos , Tibia/patología , Tibia/cirugía , Adulto , Femenino , Fracturas Óseas/cirugía , Tumores de Células Gigantes/patología , Tumores de Células Gigantes/cirugía , Humanos , Articulación de la Rodilla/patología , Prótesis de la Rodilla , Masculino , Persona de Mediana Edad , Diseño de Prótesis/instrumentación , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
18.
Sensors (Basel) ; 17(2)2017 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-28134769

RESUMEN

The integration of ad hoc device-to-device (D2D) communications and open-access small cells can result in a networking paradigm called hybrid the ad hoc network, which is particularly promising in delivering delay-tolerant data. The capacity-delay performance of hybrid ad hoc networks has been studied extensively under a popular framework called scaling law analysis. These studies, however, do not take into account aspects of interference accumulation and queueing delay and, therefore, may lead to over-optimistic results. Moreover, focusing on the average measures, existing works fail to give finer-grained insights into the distribution of delays. This paper proposes an alternative analytical framework based on queueing theoretic models and physical interference models. We apply this framework to study the capacity-delay performance of a collaborative cellular D2D network with coverage sensing and two-hop relay. The new framework allows us to fully characterize the delay distribution in the transform domain and pinpoint the impacts of coverage sensing, user and base station densities, transmit power, user mobility and packet size on the capacity-delay trade-off. We show that under the condition of queueing equilibrium, the maximum throughput capacity per device saturates to an upper bound of 0.7239 λ b / λ u bits/s/Hz, where λ b and λ u are the densities of base stations and mobile users, respectively.

19.
Small ; 12(22): 3031-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27120699

RESUMEN

Pt-Gd alloy polycrystalline thin film is deposited on 3D nickel foam by pulsed laser deposition method serving as a whole binder/carbon-free air electrode, showing great catalytic activity enhancement as an efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium oxygen batteries. The porous structure can facilitate rapid O2 and electrolyte diffusion, as well as forming a continuous conductive network throughout the whole energy conversion process. It shows a favorable cycle performance in the full discharge/charge model, owing to the high catalytic activity of the Pt-Gd alloy composite and 3D porous nickel foam structure. Specially, excellent cycling performance under capacity limited mode is also demonstrated, in which the terminal discharge voltage is higher than 2.5 V and the terminal charge voltage is lower than 3.7 V after 100 cycles at a current density of 0.1 mA cm(-2) . Therefore, this electrocatalyst is a promising bifunctional electrocatalyst for lithium oxygen batteries and this depositing high-efficient electrocatalyst on porous substrate with polycrystalline thin film by pulsed laser deposition is also a promising technique in the future lithium oxygen batteries research.

20.
Chemistry ; 22(50): 18060-18065, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27714876

RESUMEN

Two-dimensional (2D) nanomaterials are one of the most promising types of candidates for energy-storage applications due to confined thicknesses and high surface areas, which would play an essential role in enhanced reaction kinetics. Herein, a universal process that can be extended for scale up is developed to synthesise ultrathin cobalt-/nickel-based hydroxides and oxides. The sodium and lithium storage capabilities of Co3 O4 nanosheets are evaluated in detail. For sodium storage, the Co3 O4 nanosheets exhibit excellent rate capability (e.g., 179 mA h g-1 at 7.0 A g-1 and 150 mA h g-1 at 10.0 A g-1 ) and promising cycling performance (404 mA h g-1 after 100 cycles at 0.1 A g-1 ). Meanwhile, very impressive lithium storage performance is also achieved, which is maintained at 1029 mA h g-1 after 100 cycles at 0.2 A g-1 . NiO and NiCo2 O4 nanosheets are also successfully prepared through the same synthetic approach, and both deliver very encouraging lithium storage performances. In addition to rechargeable batteries, 2D cobalt-/nickel-based hydroxides and oxides are also anticipated to have great potential applications in supercapacitors, electrocatalysis and other energy-storage-/-conversion-related fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA