Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nucleic Acids Res ; 47(21): 11114-11131, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31586391

RESUMEN

Establishment and subsequent maintenance of distinct chromatin domains during embryonic stem cell (ESC) differentiation are crucial for lineage specification and cell fate determination. Here we show that the histone chaperone Chromatin Assembly Factor 1 (CAF-1), which is recruited to DNA replication forks through its interaction with proliferating cell nuclear antigen (PCNA) for nucleosome assembly, participates in the establishment of H3K27me3-mediated silencing during differentiation. Deletion of CAF-1 p150 subunit impairs the silencing of many genes including Oct4, Sox2 and Nanog as well as the establishment of H3K27me3 at these gene promoters during ESC differentiation. Mutations of PCNA residues involved in recruiting CAF-1 to the chromatin also result in defects in differentiation in vitro and impair early embryonic development as p150 deletion. Together, these results reveal that the CAF-1-PCNA nucleosome assembly pathway plays an important role in the establishment of H3K27me3-mediated silencing during cell fate determination.


Asunto(s)
Diferenciación Celular/genética , Factor 1 de Ensamblaje de la Cromatina/fisiología , Células Madre Embrionarias/fisiología , Heterocromatina/metabolismo , Células Madre Pluripotentes/fisiología , Animales , Células Cultivadas , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Replicación del ADN/genética , Silenciador del Gen/fisiología , Histona Metiltransferasas/metabolismo , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Antígeno Nuclear de Célula en Proliferación/metabolismo
2.
Development ; 143(10): 1655-62, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27013244

RESUMEN

SUMO (Small ubiquitin-related modifier) modification (SUMOylation) is a highly dynamic post-translational modification (PTM) that plays important roles in tissue development and disease progression. However, its function in adult stem cell maintenance is largely unknown. Here, we report the function of SUMOylation in somatic cyst stem cell (CySC) self-renewal in adult Drosophila testis. The SUMO pathway cell-autonomously regulates CySC maintenance. Reduction of SUMOylation promotes premature differentiation of CySCs and impedes the proliferation of CySCs, which leads to a reduction in the number of CySCs. Consistent with this, CySC clones carrying a mutation of the SUMO-conjugating enzyme are rapidly lost. Furthermore, inhibition of the SUMO pathway phenocopies disruption of the Hedgehog (Hh) pathway, and can block the proliferation of CySCs induced by Hh activation. Importantly, the SUMO pathway directly regulates the SUMOylation of Hh pathway transcription factor Cubitus interruptus (Ci), which is required for promoting CySC proliferation. Thus, we conclude that SUMO directly targets the Hh pathway and regulates CySC maintenance in adult Drosophila testis.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Testículo/citología , Animales , Diferenciación Celular , Proliferación Celular , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Epistasis Genética , Masculino , Sumoilación , Testículo/metabolismo
3.
EMBO Rep ; 18(11): 1922-1934, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28887318

RESUMEN

The Hh pathway controls many morphogenetic processes in metazoans and plays important roles in numerous pathologies and in cancer. Hh signaling is mediated by the activity of the Gli/Ci family of transcription factors. Several studies in Drosophila have shown that ubiquitination by the ubiquitin E3 ligases Slimb and Rdx(Hib) plays a crucial role in controlling Ci stability dependent on the levels of Hh signals. If Hh levels are low, Slimb adds K11- and K48-linked poly-ubiquitin chains on Ci resulting in partial degradation. Ubiquitin E2 enzymes are pivotal in determining the topologies of ubiquitin chains. However, which E2 enzymes participate in the selective ubiquitination-degradation of Ci remains elusive. Here, we find that the E2 enzyme UbcD1 negatively regulates Hh signaling activity in Drosophila wing disks. Genetic and biochemical analyses in wing disks and in cultured cells reveal that UbcD1 directly controls Ci stability. Interestingly, UbcD1 is found to be selectively involved in Slimb-mediated Ci degradation. Finally, we show that the homologs of UbcD1 play a conserved role in modulating Hh signaling in vertebrates.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Procesamiento Proteico-Postraduccional , Enzimas Ubiquitina-Conjugadoras/genética , Pez Cebra/genética , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Secuencia Conservada , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Proteínas Hedgehog/metabolismo , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/metabolismo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Receptor Patched-2/genética , Receptor Patched-2/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Estabilidad Proteica , Proteolisis , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
PLoS Biol ; 11(11): e1001721, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24302888

RESUMEN

Hedgehog signaling plays conserved roles in controlling embryonic development; its dysregulation has been implicated in many human diseases including cancers. Hedgehog signaling has an unusual reception system consisting of two transmembrane proteins, Patched receptor and Smoothened signal transducer. Although activation of Smoothened and its downstream signal transduction have been intensively studied, less is known about how Patched receptor is regulated, and particularly how this regulation contributes to appropriate Hedgehog signal transduction. Here we identified a novel role of Smurf E3 ligase in regulating Hedgehog signaling by controlling Patched ubiquitination and turnover. Moreover, we showed that Smurf-mediated Patched ubiquitination depends on Smo activity in wing discs. Mechanistically, we found that Smo interacts with Smurf and promotes it to mediate Patched ubiquitination by targeting the K1261 site in Ptc. The further mathematic modeling analysis reveals that a bidirectional control of activation of Smo involving Smurf and Patched is important for signal-receiving cells to precisely interpret external signals, thereby maintaining Hedgehog signaling reliability. Finally, our data revealed an evolutionarily conserved role of Smurf proteins in controlling Hh signaling by targeting Ptc during development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Proteínas Hedgehog/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Activación Enzimática , Estructura Terciaria de Proteína , Proteolisis , Transducción de Señal , Receptor Smoothened , Técnicas del Sistema de Dos Híbridos , Ubiquitinación , Alas de Animales/enzimología , Pez Cebra
5.
J Biol Chem ; 289(32): 22333-41, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24962581

RESUMEN

The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Proteínas del Ojo/metabolismo , Proteínas Hedgehog/metabolismo , Receptores de Superficie Celular/genética , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto , Proteínas Hedgehog/genética , Complejos Multiproteicos/metabolismo , Mutación , Regiones Promotoras Genéticas , Transducción de Señal , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
6.
J Cell Sci ; 126(Pt 18): 4230-8, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23843610

RESUMEN

The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Malfunction of the Hh signaling pathway leads to numerous serious human diseases, including congenital disorders and cancers. The seven-transmembrane domain protein Smoothened (Smo) is a key transducer of the Hh signaling pathway, and mediates the graded Hh signal across the cell plasma membrane, thereby inducing the proper expression of downstream genes. Smo accumulation on the cell plasma membrane is regulated by its C-tail phosphorylation and the graded Hh signal. The inhibitory mechanism for Smo membrane accumulation in the absence of Hh, however, is still largely unknown. Here, we report that Vps36 of the ESCRT-II complex regulates Smo trafficking between the cytosol and plasma membrane by specifically recognizing the ubiquitin signal on Smo in the absence of Hh. Furthermore, in the absence of Hh, Smo is ubiquitylated on its cytoplasmic part, including its internal loops and C-tail. Taken together, our data suggest that the ESCRT-II complex, especially Vps36, has a special role in controlling Hh signaling by targeting the membrane protein Smo for its trafficking in the absence of Hh, thereby regulating Hh signaling activity.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Receptor Smoothened , Transfección , Ubiquitinación
7.
J Biol Chem ; 288(18): 12605-14, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23532857

RESUMEN

The Hedgehog (Hh) signaling pathway plays evolutionarily conserved roles in controlling embryonic development and tissue homeostasis, and its dysregulation has been implicated in many human diseases including congenital disorder and cancer. The Hh pathway has a unique signal reception system that includes two membrane proteins, the receptor Patched (Ptc) and the transducer Smoothened (Smo). In the Hh signaling cascade, Smo plays a critical role in controlling transduction of Hh gradient signal from the outside into the inside of cells. Although the Smo downstream signal transduction has been intensively studied, the mechanism by which Smo on the plasma membrane is regulated has not been fully understood. As a specific membrane structure of metazoan cells, lipid rafts act as a platform to regulate signal transduction by forming a nanoscale cluster through protein-protein or protein-lipid interactions. However, it remains largely unknown whether lipid rafts are also involved in the regulation of Hh signal transduction. Here, we show that Smo extracellular domain (N terminus) and transmembrane domains form oligomers/higher order clusters in response to Hh signal. Furthermore, we identify that lipid rafts on the plasma membrane are essential for high level activity of Smo during the Hh signal transduction. Finally, our observation suggests that oligomerization/higher order clustering of Smo C-terminal cytoplasmic tail (C-tail) is essential for the transduction of high level Hh signal. Collectively, our data support that in response to Hh gradient signals, Smo transduces high level Hh signal by forming oligomers/higher order clusters in the lipid rafts of cell plasma membrane.


Asunto(s)
Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Microdominios de Membrana/metabolismo , Multimerización de Proteína/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas Hedgehog/genética , Humanos , Microdominios de Membrana/genética , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/genética , Receptor Smoothened
8.
J Clin Invest ; 133(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36856111

RESUMEN

Emerging evidence suggests that cryptic translation within long noncoding RNAs (lncRNAs) may produce novel proteins with important developmental/physiological functions. However, the role of this cryptic translation in complex diseases (e.g., cancer) remains elusive. Here, we applied an integrative strategy combining ribosome profiling and CRISPR/Cas9 screening with large-scale analysis of molecular/clinical data for breast cancer (BC) and identified estrogen receptor α-positive (ER+) BC dependency on the cryptic ORFs encoded by lncRNA genes that were upregulated in luminal tumors. We confirmed the in vivo tumor-promoting function of an unannotated protein, GATA3-interacting cryptic protein (GT3-INCP) encoded by LINC00992, the expression of which was associated with poor prognosis in luminal tumors. GTE-INCP was upregulated by estrogen/ER and regulated estrogen-dependent cell growth. Mechanistically, GT3-INCP interacted with GATA3, a master transcription factor key to mammary gland development/BC cell proliferation, and coregulated a gene expression program that involved many BC susceptibility/risk genes and impacted estrogen response/cell proliferation. GT3-INCP/GATA3 bound to common cis regulatory elements and upregulated the expression of the tumor-promoting and estrogen-regulated BC susceptibility/risk genes MYB and PDZK1. Our study indicates that cryptic lncRNA-encoded proteins can be an important integrated component of the master transcriptional regulatory network driving aberrant transcription in cancer, and suggests that the "hidden" lncRNA-encoded proteome might be a new space for therapeutic target discovery.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , Sistemas de Lectura Abierta , Sistemas CRISPR-Cas , Neoplasias de la Mama/genética , Estrógenos
9.
Sci Adv ; 9(31): eadf3984, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37540752

RESUMEN

The glioblastoma (GBM) stem cell-like cells (GSCs) are critical for tumorigenesis/therapeutic resistance of GBM. Mounting evidence supports tumor-promoting function of long noncoding RNAs (lncRNAs), but their role in GSCs remains poorly understood. By combining CRISPRi screen with orthogonal multiomics approaches, we identified a lncRNA DARS1-AS1-controlled posttranscriptional circuitry that promoted the malignant properties of GBM cells/GSCs. Depleting DARS1-AS1 inhibited the proliferation of GBM cells/GSCs and self-renewal of GSCs, prolonging survival in orthotopic GBM models. DARS1-AS1 depletion also impaired the homologous recombination (HR)-mediated double-strand break (DSB) repair and enhanced the radiosensitivity of GBM cells/GSCs. Mechanistically, DARS1-AS1 interacted with YBX1 to promote target mRNA binding and stabilization, forming a mixed transcriptional/posttranscriptional feed-forward loop to up-regulate expression of the key regulators of G1-S transition, including E2F1 and CCND1. DARS1-AS1/YBX1 also stabilized the mRNA of FOXM1, a master transcription factor regulating GSC self-renewal and DSB repair. Our findings suggest DARS1-AS1/YBX1 axis as a potential therapeutic target for sensitizing GBM to radiation/HR deficiency-targeted therapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , ARN Largo no Codificante , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Multiómica , ARN Largo no Codificante/genética , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo
10.
Science ; 381(6662): eabn4180, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37676964

RESUMEN

Despite substantial advances in targeting mutant KRAS, tumor resistance to KRAS inhibitors (KRASi) remains a major barrier to progress. Here, we report proteostasis reprogramming as a key convergence point of multiple KRASi-resistance mechanisms. Inactivation of oncogenic KRAS down-regulated both the heat shock response and the inositol-requiring enzyme 1α (IRE1α) branch of the unfolded protein response, causing severe proteostasis disturbances. However, IRE1α was selectively reactivated in an ER stress-independent manner in acquired KRASi-resistant tumors, restoring proteostasis. Oncogenic KRAS promoted IRE1α protein stability through extracellular signal-regulated kinase (ERK)-dependent phosphorylation of IRE1α, leading to IRE1α disassociation from 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) E3-ligase. In KRASi-resistant tumors, both reactivated ERK and hyperactivated AKT restored IRE1α phosphorylation and stability. Suppression of IRE1α overcame resistance to KRASi. This study reveals a druggable mechanism that leads to proteostasis reprogramming and facilitates KRASi resistance.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Endorribonucleasas , Inhibidores Enzimáticos , Quinasas MAP Reguladas por Señal Extracelular , Factores de Transcripción del Choque Térmico , Neoplasias , Proteostasis , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Inhibidores Enzimáticos/farmacología , Antineoplásicos/farmacología , Factores de Transcripción del Choque Térmico/metabolismo
11.
Elife ; 102021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34240701

RESUMEN

Signals from the pre-T cell receptor and Notch coordinately instruct ß-selection of CD4-CD8-double negative (DN) thymocytes to generate αß T cells in the thymus. However, how these signals ensure a high-fidelity proteome and safeguard the clonal diversification of the pre-selection TCR repertoire given the considerable translational activity imposed by ß-selection is largely unknown. Here, we identify the endoplasmic reticulum (ER)-associated degradation (ERAD) machinery as a critical proteostasis checkpoint during ß-selection. Expression of the SEL1L-HRD1 complex, the most conserved branch of ERAD, is directly regulated by the transcriptional activity of the Notch intracellular domain. Deletion of Sel1l impaired DN3 to DN4 thymocyte transition and severely impaired mouse αß T cell development. Mechanistically, Sel1l deficiency induced unresolved ER stress that triggered thymocyte apoptosis through the PERK pathway. Accordingly, genetically inactivating PERK rescued T cell development from Sel1l-deficient thymocytes. In contrast, IRE1α/XBP1 pathway was induced as a compensatory adaptation to alleviate Sel1l-deficiency-induced ER stress. Dual loss of Sel1l and Xbp1 markedly exacerbated the thymic defect. Our study reveals a critical developmental signal controlled proteostasis mechanism that enforces T cell development to ensure a healthy adaptive immunity.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Receptores Notch/metabolismo , Timocitos/metabolismo , Animales , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Femenino , Inflamación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , Proteostasis , Ubiquitina-Proteína Ligasas/metabolismo , Proteína 1 de Unión a la X-Box/metabolismo
12.
Genome Biol ; 22(1): 240, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34425866

RESUMEN

BACKGROUND: The human genome encodes over 14,000 pseudogenes that are evolutionary relics of protein-coding genes and commonly considered as nonfunctional. Emerging evidence suggests that some pseudogenes may exert important functions. However, to what extent human pseudogenes are functionally relevant remains unclear. There has been no large-scale characterization of pseudogene function because of technical challenges, including high sequence similarity between pseudogene and parent genes, and poor annotation of transcription start sites. RESULTS: To overcome these technical obstacles, we develop an integrated computational pipeline to design the first genome-wide library of CRISPR interference (CRISPRi) single-guide RNAs (sgRNAs) that target human pseudogene promoter-proximal regions. We perform the first pseudogene-focused CRISPRi screen in luminal A breast cancer cells and reveal approximately 70 pseudogenes that affect breast cancer cell fitness. Among the top hits, we identify a cancer-testis unitary pseudogene, MGAT4EP, that is predominantly localized in the nucleus and interacts with FOXA1, a key regulator in luminal A breast cancer. By enhancing the promoter binding of FOXA1, MGAT4EP upregulates the expression of oncogenic transcription factor FOXM1. Integrative analyses of multi-omic data from the Cancer Genome Atlas (TCGA) reveal many unitary pseudogenes whose expressions are significantly dysregulated and/or associated with overall/relapse-free survival of patients in diverse cancer types. CONCLUSIONS: Our study represents the first large-scale study characterizing pseudogene function. Our findings suggest the importance of nuclear function of unitary pseudogenes and underscore their underappreciated roles in human diseases. The functional genomic resources developed here will greatly facilitate the study of human pseudogene function.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Seudogenes/genética , Neoplasias de la Mama/genética , Núcleo Celular/genética , Proliferación Celular , Biología Computacional , Proteína Forkhead Box M1/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Células MCF-7 , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Guía de Kinetoplastida/genética , Reproducibilidad de los Resultados , Regulación hacia Arriba/genética
13.
Cell Discov ; 6: 43, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32637151

RESUMEN

Genetic robustness is an important characteristic to tolerate genetic or nongenetic perturbations and ensure phenotypic stability. Morphogens, a type of evolutionarily conserved diffusible molecules, govern tissue patterns in a direction-dependent or concentration-dependent manner by differentially regulating downstream gene expression. However, whether the morphogen-directed gene regulatory network possesses genetic robustness remains elusive. In the present study, we collected 4217 morphogen-responsive genes along A-P axis of Drosophila wing discs from the RNA-seq data, and clustered them into 12 modules. By applying mathematical model to the measured data, we constructed a gene modular network (GMN) to decipher the module regulatory interactions and robustness in morphogen-directed development. The computational analyses on asymptotical dynamics of this GMN demonstrated that this morphogen-directed GMN is robust to tolerate a majority of genetic perturbations, which has been further validated by biological experiments. Furthermore, besides the genetic alterations, we further demonstrated that this morphogen-directed GMN can well tolerate nongenetic perturbations (Hh production changes) via computational analyses and experimental validation. Therefore, these findings clearly indicate that the morphogen-directed GMN is robust in response to perturbations and is important for Drosophila to ensure the proper tissue patterning in wing disc.

14.
J Vis Exp ; (159)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32478757

RESUMEN

Preclinical models that faithfully recapitulate tumor heterogeneity and therapeutic response are critical for translational breast cancer research. Immortalized cell lines are easy to grow and genetically modify to study molecular mechanisms, yet the selective pressure from cell culture often leads to genetic and epigenetic alterations over time. Patient-derived xenograft (PDX) models faithfully recapitulate the heterogeneity and drug response of human breast tumors. PDX models exhibit a relatively short latency after orthotopic transplantation that facilitates the investigation of breast tumor biology and drug response. The transplantable genetically engineered mouse models allow the study of breast tumor immunity. The current protocol describes the method to orthotopically transplant breast tumor fragments into the mammary fat pad followed by drug treatments. These preclinical models provide valuable approaches to investigate breast tumor biology, drug response, biomarker discovery and mechanisms of drug resistance.


Asunto(s)
Neoplasias de la Mama/cirugía , Trasplantes/cirugía , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones
16.
J Mol Cell Biol ; 10(5): 437-447, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29432547

RESUMEN

The Hedgehog (Hh) signaling pathway plays important roles in both embryonic development and adult tissue homeostasis. Such biological functions are mediated by the transcription factor Cubitus interruptus (Ci). Yet the transcriptional regulation of the effector Ci itself is poorly investigated. Through an RNAi-based genetic screen, we identified that female sterile (1) homeotic (Fsh), a transcription co-activator, directly activates Ci transcription. Biochemistry assays demonstrated physical interactions among Fsh, Sex combs extra (Sce), and Polycomb (Pc). Functional assays further showed that both Pc and Sce are required for Ci expression, which is not likely mediated by the derepression of Engrailed (En), a repressor of Ci, in Pc or Sce mutant cells. Finally, we provide evidence showing that Pc/Sce facilitates the binding of Fsh at Ci locus and that the physical interaction between Fsh and Pc is essential for Fsh-mediated Ci transcription. Taken together, we not only uncover that Ci is transcriptionally regulated by Fsh-Pc-Sce complex but also provide evidence for the coordination between Fsh and PcG proteins in transcriptional regulation.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/genética , Epigénesis Genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Mutación , Complejo Represivo Polycomb 1/genética , Transcripción Genética , Alas de Animales/crecimiento & desarrollo
17.
J Clin Invest ; 128(4): 1283-1299, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29480818

RESUMEN

The unfolded protein response (UPR) is a cellular homeostatic mechanism that is activated in many human cancers and plays pivotal roles in tumor progression and therapy resistance. However, the molecular mechanisms for UPR activation and regulation in cancer cells remain elusive. Here, we show that oncogenic MYC regulates the inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) branch of the UPR in breast cancer via multiple mechanisms. We found that MYC directly controls IRE1 transcription by binding to its promoter and enhancer. Furthermore, MYC forms a transcriptional complex with XBP1, a target of IRE1, and enhances its transcriptional activity. Importantly, we demonstrate that XBP1 is a synthetic lethal partner of MYC. Silencing of XBP1 selectively blocked the growth of MYC-hyperactivated cells. Pharmacological inhibition of IRE1 RNase activity with small molecule inhibitor 8866 selectively restrained the MYC-overexpressing tumor growth in vivo in a cohort of preclinical patient-derived xenograft models and genetically engineered mouse models. Strikingly, 8866 substantially enhanced the efficacy of docetaxel chemotherapy, resulting in rapid regression of MYC-overexpressing tumors. Collectively, these data establish the synthetic lethal interaction of the IRE1/XBP1 pathway with MYC hyperactivation and provide a potential therapy for MYC-driven human breast cancers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Docetaxel/farmacología , Sistemas de Liberación de Medicamentos , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elementos de Respuesta , Transducción de Señal/efectos de los fármacos , Proteína 1 de Unión a la X-Box/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Endorribonucleasas/genética , Femenino , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Saccharomyces cerevisiae , Transducción de Señal/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Proteína 1 de Unión a la X-Box/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Sci Rep ; 7(1): 5101, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28698559

RESUMEN

Hox genes play a fundamental role in regulating animal development. However, less is known about their functions on homeostasis maintenance in adult stem cells. Here, we report that the repression of an important axial Hox gene, Abdominal-B (Abd-B), in cyst stem cells (CySCs) is essential for the homeostasis and cell identity maintenance in the adult Drosophila testis. Derepression of Abd-B in CySCs disrupts the proper self-renewal of both germline stem cells (GSCs) and CySCs, and leads to an excessive expansion of early stage somatic cells, which originate from both lineages. We further demonstrate that canonical Polycomb (Pc) and functional pathway of Polycomb group (PcG) proteins are responsible for maintaining the germline cell identity non-autonomously via repressing Abd-B in CySCs in the adult Drosophila testis.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Testículo/citología , Animales , Linaje de la Célula , Células Cultivadas , Drosophila/genética , Drosophila/metabolismo , Histonas/metabolismo , Masculino , Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Células Madre/citología , Células Madre/metabolismo , Testículo/metabolismo
19.
Cell Res ; 26(5): 529-42, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27002220

RESUMEN

The highly conserved polycomb group (PcG) proteins maintain heritable transcription repression of the genes essential for development from fly to mammals. However, sporadic reports imply a potential role of PcGs in positive regulation of gene transcription, although systematic investigation of such function and the underlying mechanism has rarely been reported. Here, we report a Pc-mediated, H3K27me3-dependent positive transcriptional regulation of Senseless (Sens), a key transcription factor required for development. Mechanistic studies show that Pc regulates Sens expression by promoting H4K20me1 at the Sens locus. Further bioinformatic analysis at genome-wide level indicates that the existence of H4K20me1 acts as a selective mark for positive transcriptional regulation by Pc/H3K27me3. Both the intensities and specific patterns of Pc and H3K27me3 are important for the fates of target gene transcription. Moreover, binding of transcription factor Broad (Br), which physically interacts with Pc and positively regulates the transcription of Sens, is observed in Pc(+)H3K27me3(+)H4K20me1(+) genes, but not in Pc(+)H3K27me3(+)H4K20me1(-) genes. Taken together, our study reveals that, coupling with the transcription factor Br, Pc positively regulates transcription of Pc(+)H3K27me3(+)H4K20me1(+) genes in developing Drosophila wing disc.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Lisina/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Animales , Secuencia de Bases , Biomarcadores/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Metilación , Proteínas Nucleares/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Transcripción Genética , Alas de Animales/metabolismo
20.
Methods Mol Biol ; 1322: 61-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26179039

RESUMEN

Protein-protein interactions and signal-induced protein conformational changes are fundamental molecular events that are considered as essential in modern life sciences. Among various techniques developed to study such phenomena, fluorescence resonance energy transfer (FRET) is a widely used method with many advantages in detecting these molecular events. Here, we describe the application of FRET in the mechanistic investigation of cell signal transduction, taking the example of the Hh signaling pathway, which plays a critical role in embryonic development and tissue homeostasis. A number of general guidelines as well as some key notes have been summarized as a protocol for reader's reference.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Conformación Proteica , Mapeo de Interacción de Proteínas , Transducción de Señal , Animales , Línea Celular , Drosophila , Transferencia Resonante de Energía de Fluorescencia/métodos , Expresión Génica , Proteínas Hedgehog/genética , Ratones , Imagen Molecular , Alas de Animales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA