Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Exp Brain Res ; 242(3): 585-597, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38227007

RESUMEN

Transcranial direct current stimulation (tDCS) over left dorsolateral prefrontal cortex (DLPFC) has shown some potential as an adjunctive intervention for ameliorating negative symptoms of schizophrenia, but its efficacy requires optimization. Recently, 'functional targeting' of stimulation holds promise for advancing tDCS efficacy by coupling tDCS with a cognitive task where the target brain regions are activated by that task and further specifically polarized by tDCS.The study used 48-channel functional near infra-red spectroscopy (fNIRS) aiming to determine a cognitive task that can effectively induce a cortical activation of the left DLPFC in schizophrenia patients with predominant negative symptoms before running a tDCS trial. Sixty schizophrenia patients with predominant negative symptoms completed measures of clinical and psychosocial functioning characteristics and assessments across cognitive domains. Hemodynamic changes during n-back working memory tasks with different cognitive loads (1-back and 2-back) and verbal fluency test (VFT) were measured using fNIRS. For n-back tasks, greater signal changes were found when the task required elevated cognitive load. One sample t-test revealed that only 2-back task elicited significant activation in left DLPFC (t = 4.23, FDR-corrected p = 0.0007). During VFT, patients failed to show significant task-related activity in left DLPFC (one sample t-test, t = -0.25, FDR-corrected p > 0.05). Our study implies that 2-back task can effectively activate left DLPFC in schizophrenia patients with predominant negative symptoms. This neurophysiologically-validated task is considered highly potential to be executed in conjunction with high-definition tDCS for "functional targeting" of the left DLPFC to treat negative symptoms in a double-blind randomized sham-control trial, registered on ClinicalTrials.gov Registry (ID: NCT05582980).


Asunto(s)
Esquizofrenia , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Corteza Prefontal Dorsolateral , Esquizofrenia/terapia , Corteza Prefrontal/fisiología , Análisis Espectral , Método Doble Ciego
2.
Medicina (Kaunas) ; 59(4)2023 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37109695

RESUMEN

Background and Objectives: Attentional dysfunction has long been viewed as one of the fundamental underlying cognitive deficits in schizophrenia. There is an urgent need to understand its neural underpinning and develop effective treatments. In the process of attention, neural oscillation has a central role in filtering information and allocating resources to either stimulus-driven or goal-relevant objects. Here, we asked if resting-state EEG connectivity correlated with attentional performance in schizophrenia patients. Materials and Methods: Resting-state EEG recordings were obtained from 72 stabilized patients with schizophrenia. Lagged phase synchronization (LPS) was used to measure whole-brain source-based functional connectivity between 84 intra-cortical current sources determined by eLORETA (exact low-resolution brain electromagnetic tomography) for five frequencies. The Conners' Continuous Performance Test-II (CPT-II) was administered for evaluating attentional performance. Linear regression with a non-parametric permutation randomization procedure was used to examine the correlations between the whole-brain functional connectivity and the CPT-II measures. Results: Greater beta-band right hemispheric fusiform gyrus (FG)-lingual gyrus (LG) functional connectivity predicted higher CPT-II variability scores (r = 0.44, p < 0.05, corrected), accounting for 19.5% of variance in the CPT-II VAR score. Greater gamma-band right hemispheric functional connectivity between the cuneus (Cu) and transverse temporal gyrus (TTG) and between Cu and the superior temporal gyrus (STG) predicted higher CPT-II hit reaction time (HRT) scores (both r = 0.50, p < 0.05, corrected), accounting for 24.6% and 25.1% of variance in the CPT-II HRT score, respectively. Greater gamma-band right hemispheric Cu-TTG functional connectivity predicted higher CPT-II HRT standard error (HRTSE) scores (r = 0.54, p < 0.05, corrected), accounting for 28.7% of variance in the CPT-II HRTSE score. Conclusions: Our study indicated that increased right hemispheric resting-state EEG functional connectivity at high frequencies was correlated with poorer focused attention in schizophrenia patients. If replicated, novel approaches to modulate these networks may yield selective, potent interventions for improving attention deficits in schizophrenia.


Asunto(s)
Trastornos del Conocimiento , Esquizofrenia , Humanos , Esquizofrenia/complicaciones , Electroencefalografía/métodos , Encéfalo , Lóbulo Temporal , Imagen por Resonancia Magnética
3.
Biomedicines ; 11(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831167

RESUMEN

EEG studies indicated that schizophrenia patients had increased resting-state theta-band functional connectivity, which was associated with negative symptoms. We recently published the first study showing that theta (6 Hz) transcranial alternating current stimulation (tACS) over left prefrontal and parietal cortices during a working memory task for accentuating frontoparietal theta-band synchronization (in-phase theta-tACS) reduced negative symptoms in schizophrenia patients. Here, we hypothesized that in-phase theta-tACS can modulate theta-band large-scale networks connectivity in schizophrenia patients. In this randomized, double-blind, sham-controlled trial, patients received twice-daily, 2 mA, 20-min sessions of in-phase theta-tACS for 5 consecutive weekdays (n = 18) or a sham stimulation (n = 18). Resting-state electroencephalography data were collected at baseline, end of stimulation, and at one-week follow-up. Exact low resolution electromagnetic tomography (eLORETA) was used to compute intra-cortical activity. Lagged phase synchronization (LPS) was used to measure whole-brain source-based functional connectivity across 84 cortical regions at theta frequency (5-7 Hz). EEG data from 35 patients were analyzed. We found that in-phase theta-tACS significantly reduced the LPS between the posterior cingulate (PC) and the parahippocampal gyrus (PHG) in the right hemisphere only at the end of stimulation relative to sham (p = 0.0009, corrected). The reduction in right hemispheric PC-PHG LPS was significantly correlated with negative symptom improvement at the end of the stimulation (r = 0.503, p = 0.039). Our findings suggest that in-phase theta-tACS can modulate theta-band large-scale functional connectivity pertaining to negative symptoms. Considering the failure of right hemispheric PC-PHG functional connectivity to predict improvement in negative symptoms at one-week follow-up, future studies should investigate whether it can serve as a surrogate of treatment response to theta-tACS.

4.
J Pers Med ; 12(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36294755

RESUMEN

Schizophrenia is associated with increased resting-state large-scale functional network connectivity in the gamma frequency. High-frequency transcranial random noise stimulation (hf-tRNS) modulates gamma-band endogenous neural oscillations in healthy individuals through the application of low-amplitude electrical noises. Yet, it is unclear if hf-tRNS can modulate gamma-band functional connectivity in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled clinical trial to contrast hf-tRNS (N = 17) and sham stimulation (N = 18) for treating negative symptoms in 35 schizophrenia patients. Short continuous currents without neuromodulatory effects were applied in the sham group to mimic real-stimulation sensations. We used electroencephalography to investigate if a five-day, twice-daily hf-tRNS protocol modulates gamma-band (33-45 Hz) functional network connectivity in schizophrenia. Exact low resolution electromagnetic tomography (eLORETA) was used to compute intra-cortical activity from regions within the default mode network (DMN) and fronto-parietal network (FPN), and functional connectivity was computed using lagged phase synchronization. We found that hf-tRNS reduced gamma-band within-DMN and within-FPN connectivity at the end of stimulation relative to sham stimulation. A trend was obtained between the change in within-FPN functional connectivity from baseline to the end of stimulation and the improvement of negative symptoms at the one-month follow-up (r = -0.49, p = 0.055). Together, our findings suggest that hf-tRNS has potential as a network-level approach to modulate large-scale functional network connectivity pertaining to negative symptoms of schizophrenia.

5.
J Pers Med ; 12(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36294806

RESUMEN

Reduced left-lateralized electroencephalographic (EEG) frontal alpha asymmetry (FAA), a biomarker for the imbalance of interhemispheric frontal activity and motivational disturbances, represents a neuropathological attribute of negative symptoms of schizophrenia. Unidirectional high-frequency transcranial random noise stimulation (hf-tRNS) can increase the excitability of the cortex beneath the stimulating electrode. Yet, it is unclear if hf-tRNS can modulate electroencephalographic FAA in patients with schizophrenia. We performed a randomized, double-blind, sham-controlled clinical trial to contrast hf-tRNS and sham stimulation for treating negative symptoms in 35 schizophrenia patients. We used electroencephalography to investigate if 10 sessions of hf-tRNS delivered twice-a-day for five consecutive weekdays would modulate electroencephalographic FAA in schizophrenia. EEG data were collected and FAA was expressed as the differences between common-log-transformed absolute power values of frontal right and left hemisphere electrodes in the alpha frequency range (8-12.5 Hz). We found that hf-tRNS significantly increased FAA during the first session of stimulation (p = 0.009) and at the 1-week follow-up (p = 0.004) relative to sham stimulation. However, FAA failed to predict and surrogate the improvement in the severity of negative symptoms with hf-tRNS intervention. Together, our findings suggest that modulating electroencephalographic frontal alpha asymmetry by using unidirectional hf-tRNS may play a key role in reducing negative symptoms in patients with schizophrenia.

6.
J Pers Med ; 11(11)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34834466

RESUMEN

Negative symptoms represent an unmet need for schizophrenia treatment. The effect of theta frequency transcranial alternating current stimulation (theta-tACS) applied during working memory (WM) tasks on negative symptoms has not been demonstrated as of yet. We conducted a randomized, double-blind, sham-controlled trial of 36 stabilized schizophrenia patients, randomized to receive either twice daily, 6 Hz 2 mA, 20 min sessions of in-phase frontoparietal tACS or sham for five consecutive weekdays. Participants were concurrently engaged in WM tasks during stimulation. The primary outcome measure was the change over time in the Positive and Negative Syndrome Scale (PANSS) negative subscale score measured from baseline through to the 1-month follow-up. Secondary outcome measures were other symptom clusters, neurocognitive performance, and relevant outcomes. The intention-to-treat analysis demonstrated greater reductions in PANSS negative subscale scores at the end of stimulation in the active (-13.84%) than the sham (-3.78%) condition, with a large effect size (Cohen's d = 0.96, p = 0.006). The positive effect endured for at least one month. Theta-tACS also showed efficacies for cognitive symptoms, WM capacity, and psychosocial functions. Online theta-tACS offers a novel approach to modulate frontoparietal networks to treat negative symptoms of schizophrenia. The promising results require large-scale replication studies in patients with predominantly negative symptoms.

7.
Asian J Psychiatr ; 53: 102171, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32454438

RESUMEN

Varying degrees of impaired clinical insight in schizophrenia differentially impact medication adherence and clinical outcomes, prompting in-depth investigations of the deficits. Research is scarce on the differences in peripheral physiological markers between varying degrees of impaired insight. The aims of this study were to examine the differences in (1) resting-state high-frequency heart rate variability (HF-HRV) and (2) crucial clinical outcomes between schizophrenia patients with varying degrees of insight impairment as measured by the Positive and Negative Syndrome Scale (PANSS) item G12 (lack of judgment and insight). The study recruited a sample of 95 stabilized schizophrenia patients with insight impairment. Patients were divided into 2 groups of either minimal insight impairment (n = 25, PANSS G12 = 2-3) or moderate-to-severe insight impairment (n = 70, PANSS G12 ≥ 4). Patients with moderate-to-severe insight impairment displayed lower HF-HRV, clinician-rated psychosocial function, medication adherence, and working memory capacity, and higher self-reported psychosocial function and life quality, but comparable cognitive insight compared to those with minimal insight impairment. A logistic regression model predicted moderate-to-severe insight impairment based on HF-HRV values at the optimal cut-off point of 3.655, with the sensitivity and specificity 84% and 72%, respectively. HF-HRV seems a peripheral marker sensitively reflecting central pathophysiology implicated in insight impairment of schizophrenia.


Asunto(s)
Esquizofrenia , Frecuencia Cardíaca , Humanos , Memoria a Corto Plazo , Esquizofrenia/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA