Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 20(28): e2308143, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38351655

RESUMEN

Covalent organic frameworks (COFs) are an ideal template to construct high-efficiency catalysts for oxygen reduction reaction (ORR) due to their predictable properties. However, the closely parallel-stacking manner and lacking intramolecular electron transfer ability of COFs limit atomic utilization efficiency and intrinsic activity. Herein, COFs are constructed with large interlayer distances and enhanced electronic transfer ability by side-chain functionalization. Long chains with electron-donating features not only enlarge interlayer distance, but also narrow the bandgap. The resulting DPPS-COF displays higher electrochemical surface areas to provide more exposed active sites, despite <1/10 surface areas. DPPS-COF exhibits excellent electrocatalytic ORR activity with half-wave potential of 0.85 V, which is 30 and 60 mV positive than those of Pt/C and DPP-COF, and is the record among the reported COFs. DPPS-COF is employed as cathode electrocatalyst for zinc-air battery with a maximum power density of 185.2 mW cm-2, which is superior to Pt/C. Theoretical calculation further reveals that longer electronic-donating chains not only facilitate the formation of intermediate OOH* from O2, but also promote intermediates desorption , and thus leading to higher activity.

2.
Small ; : e2403775, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949055

RESUMEN

Despite the challenges associated with the synthesis of flexible metal-covalent organic frameworks (MCOFs), these offer the unique advantage of maximizing the atomic utilization efficiency. However, the construction of flexible MCOFs with flexible building units or linkages has rarely been reported. In this study, novel flexible MCOFs are constructed using flexible building blocks and copper clusters with hydrazone linkages. The heterometallic frameworks (Cu, Co) are prepared through the hydrazone linkage coordination method and evaluated as catalysts for the oxygen evolution reaction (OER). Owing to the spatial separation and functional cooperation of the heterometallic MCOF catalysts, the as-synthesized MCOFs exhibited outstanding catalytic activities with an overpotential of 268.8 mV at 10 mA cm-2 for the OER in 1 M KOH, which is superior to those of the reported covalent organic frameworks (COFs)-based OER catalysts. Theoretical calculations further elucidated the synergistic effect of heterometallic active sites within the linkages and frameworks, contributing to the enhanced OER activity. This study thus introduces a novel approach to the fundamental design of flexible MCOF catalysts for the OER, emphasizing their enhanced atomic utilization efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA