Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neurochem Res ; 37(3): 527-37, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22076500

RESUMEN

Several studies showed that the up-regulation of glial glutamate transporter-1 (GLT-1) participates in the acquisition of brain ischemic tolerance induced by cerebral ischemic preconditioning or ceftriaxone pretreatment in rats. To explore whether GLT-1 plays a role in the acquisition of brain ischemic tolerance induced by intermittent hypobaric hypoxia (IH) preconditioning (mimicking 5,000 m high-altitude, 6 h per day, once daily for 28 days), immunohistochemistry and western blot were used to observe the changes in the expression of GLT-1 protein in hippocampal CA1 subfield during the induction of brain ischemic tolerance by IH preconditioning, and the effect of dihydrokainate (DHK), an inhibitor of GLT-1, on the acquisition of brain ischemic tolerance in rats. The basal expression of GLT-1 protein in hippocampal CA1 subfield was significantly up-regulated by IH preconditioning, and at the same time astrocytes were activated by IH preconditioning, which appeared normal soma and aplenty slender processes. The GLT-1 expression was decreased at 7 days after 8-min global brain ischemia. When the rats were pretreated with the IH preconditioning before the global brain ischemia, the down-regulation of GLT-1 protein was prevented clearly. Neuropathological evaluation by thionin staining showed that 200 nmol DHK blocked the protective role of IH preconditioning against delayed neuronal death induced normally by 8-min global brain ischemia. Taken together, the up-regulation of GLT-1 protein participates in the acquisition of brain ischemic tolerance induced by IH preconditioning in rats.


Asunto(s)
Isquemia Encefálica/fisiopatología , Transportador 2 de Aminoácidos Excitadores/metabolismo , Hipoxia/fisiopatología , Precondicionamiento Isquémico , Regulación hacia Arriba , Animales , Western Blotting , Isquemia Encefálica/metabolismo , Inmunohistoquímica , Masculino , Ratas , Ratas Wistar
2.
Reprod Sci ; 25(4): 609-620, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28982275

RESUMEN

The essence of primary ovarian insufficiency (POI) is the premature exhaustion of primordial follicles in the follicle pool, which is caused by the excessive premature activation of primordial follicles after birth. Bisphenol A (BPA) exposure promotes the transition of primordial follicles to primary follicles, thus the number of primordial follicles in the primordial follicle pool decreases significantly. However, the molecular mechanisms underlying abnormal follicle activation are poorly understood. Phosphatase and tensin homologue (PTEN) signal system is a negative regulator of follicle activation, which is called the brake of follicle activation. Besides, BPA induces Michigan Cancer Foundation-7 breast cancer cells proliferation by dysregulating PTEN/serine/threonine kinase/p53 axis. Whether BPA initiates the excessive premature activation of primordial follicles in the mouse ovaries via PTEN signaling pathway is unclear. In this study, we treated 6-week-old female CD-1 mice with different concentrations of BPA to study the effect of BPA on follicular activation and development in vivo, as well as the role of PTEN signaling in this process. We observed that BPA in concentrations from 1 µg/kg to 10 mg/kg groups downregulated PTEN expression and initiated excessive premature activation of primordial follicles in the mouse ovaries, and this effect was partly reversible by PTEN overexpression. Our results improve the understanding of both the effect of BPA in occurrence of POI and molecular mechanisms underlying initiation of primordial follicle pool activation, thus providing insight for POI treatment and theoretical basis for reducing the risk of POI.


Asunto(s)
Compuestos de Bencidrilo/farmacología , Estrógenos no Esteroides/farmacología , Folículo Ovárico/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Fenoles/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Femenino , Ratones , Folículo Ovárico/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA