Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38804138

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) is a major complication linked to adverse outcomes in heart failure with preserved ejection fraction (HFpEF), yet no specific therapies exist for PH associated with HFpEF (PH-HFpEF). We have recently reported on the role of skeletal muscle SIRT3 (sirtuin-3) in modulation of PH-HFpEF, suggesting a novel endocrine signaling pathway for skeletal muscle modulation of pulmonary vascular remodeling. In this study, we attempted to define the processes by which skeletal muscle SIRT3 defects affect pulmonary vascular health in PH-HFpEF. METHODS AND RESULTS: Skeletal muscle-specific Sirt3 knockout mice (Sirt3skm-/-) exhibited reduced pulmonary vascular density accompanied by pulmonary vascular proliferative remodeling and elevated pulmonary pressures. Using mass spectrometry-based comparative secretome analysis, we demonstrated elevated secretion of LOXL2 (lysyl oxidase homolog 2) in SIRT3-deficient skeletal muscle cells. Elevated circulation and protein expression levels of LOXL2 were also observed in plasma and skeletal muscle of Sirt3skm-/- mice, a rat model of PH-HFpEF, and humans with PH-HFpEF. In addition, expression levels of CNPY2 (canopy fibroblast growth factor signaling regulator 2), a known proliferative and angiogenic factor, were increased in pulmonary artery endothelial cells and pulmonary artery smooth muscle cells of Sirt3skm-/- mice and animal models of PH-HFpEF. CNPY2 levels were also higher in pulmonary artery smooth muscle cells of subjects with obesity compared with nonobese subjects. Moreover, treatment with recombinant LOXL2 protein promoted pulmonary artery endothelial cell migration/proliferation and pulmonary artery smooth muscle cell proliferation through regulation of CNPY2-p53 signaling. Last, skeletal muscle-specific Loxl2 deletion decreased pulmonary artery endothelial cell and pulmonary artery smooth muscle cell expression of CNPY2 and improved pulmonary pressures in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS: This study demonstrates a systemic pathogenic impact of skeletal muscle SIRT3 deficiency in remote pulmonary vascular remodeling and PH-HFpEF. This study suggests a new endocrine signaling axis that links skeletal muscle health and SIRT3 deficiency to remote CNPY2 regulation in the pulmonary vasculature through myokine LOXL2. Our data also identify skeletal muscle SIRT3, myokine LOXL2, and CNPY2 as potential targets for the treatment of PH-HFpEF.

2.
Arterioscler Thromb Vasc Biol ; 44(7): 1570-1583, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38813697

RESUMEN

BACKGROUND: Pulmonary hypertension (PH) represents an important phenotype in heart failure with preserved ejection fraction (HFpEF). However, management of PH-HFpEF is challenging because mechanisms involved in the regulation of PH-HFpEF remain unclear. METHODS: We used a mass spectrometry-based comparative plasma proteomics approach as a sensitive and comprehensive hypothesis-generating discovery technique to profile proteins in patients with PH-HFpEF and control subjects. We then validated and investigated the role of one of the identified proteins using in vitro cell cultures, in vivo animal models, and independent cohort of human samples. RESULTS: Plasma proteomics identified high protein abundance levels of B2M (ß2-microglobulin) in patients with PH-HFpEF. Interestingly, both circulating and skeletal muscle levels of B2M were increased in mice with skeletal muscle SIRT3 (sirtuin-3) deficiency or high-fat diet-induced PH-HFpEF. Plasma and muscle biopsies from a validation cohort of PH-HFpEF patients were found to have increased B2M levels, which positively correlated with disease severity, especially pulmonary capillary wedge pressure and right atrial pressure at rest. Not only did the administration of exogenous B2M promote migration/proliferation in pulmonary arterial vascular endothelial cells but it also increased PCNA (proliferating cell nuclear antigen) expression and cell proliferation in pulmonary arterial vascular smooth muscle cells. Finally, B2m deletion improved glucose intolerance, reduced pulmonary vascular remodeling, lowered PH, and attenuated RV hypertrophy in mice with high-fat diet-induced PH-HFpEF. CONCLUSIONS: Patients with PH-HFpEF display higher circulating and skeletal muscle expression levels of B2M, the magnitude of which correlates with disease severity. Our findings also reveal a previously unknown pathogenic role of B2M in the regulation of pulmonary vascular proliferative remodeling and PH-HFpEF. These data suggest that circulating and skeletal muscle B2M can be promising targets for the management of PH-HFpEF.


Asunto(s)
Modelos Animales de Enfermedad , Insuficiencia Cardíaca , Hipertensión Pulmonar , Proteómica , Volumen Sistólico , Microglobulina beta-2 , Adulto , Anciano , Animales , Humanos , Masculino , Ratones , Persona de Mediana Edad , Microglobulina beta-2/genética , Microglobulina beta-2/sangre , Microglobulina beta-2/metabolismo , Biomarcadores/sangre , Estudios de Casos y Controles , Movimiento Celular , Proliferación Celular , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/genética , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/sangre , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/metabolismo , Proteómica/métodos , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/metabolismo , Sirtuina 3/genética , Sirtuina 3/metabolismo , Remodelación Vascular , Función Ventricular Izquierda
3.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L687-L697, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38563965

RESUMEN

Chronic cigarette smoke exposure decreases lung expression of WWOX which is known to protect the endothelial barrier during infectious models of acute respiratory distress syndrome (ARDS). Proteomic analysis of WWOX-silenced endothelial cells (ECs) was done using tandem mass tag mass spectrometry (TMT-MS). WWOX-silenced ECs as well as those isolated from endothelial cell Wwox knockout (EC Wwox KO) mice were subjected to cyclic stretch (18% elongation, 0.5 Hz, 4 h). Cellular lysates and media supernatant were harvested for assays of cellular signaling, protein expression, and cytokine release. These were repeated with dual silencing of WWOX and zyxin. Control and EC Wwox KO mice were subjected to high tidal volume ventilation. Bronchoalveolar lavage fluid and mouse lung tissue were harvested for cellular signaling, cytokine secretion, and histological assays. TMT-MS revealed upregulation of zyxin expression during WWOX knockdown which predicted a heightened inflammatory response to mechanical stretch. WWOX-silenced ECs and ECs isolated from EC Wwox mice displayed significantly increased cyclic stretch-mediated secretion of various cytokines (IL-6, KC/IL-8, IL-1ß, and MCP-1) relative to controls. This was associated with increased ERK and JNK phosphorylation but decreased p38 mitogen-activated kinases (MAPK) phosphorylation. EC Wwox KO mice subjected to VILI sustained a greater degree of injury than corresponding controls. Silencing of zyxin during WWOX knockdown abrogated stretch-induced increases in IL-8 secretion but not in IL-6. Loss of WWOX function in ECs is associated with a heightened inflammatory response during mechanical stretch that is associated with increased MAPK phosphorylation and appears, in part, to be dependent on the upregulation of zyxin.NEW & NOTEWORTHY Prior tobacco smoke exposure is associated with an increased risk of acute respiratory distress syndrome (ARDS) during critical illness. Our laboratory is investigating one of the gene expression changes that occurs in the lung following smoke exposure: WWOX downregulation. Here we describe changes in protein expression associated with WWOX knockdown and its influence on ventilator-induced ARDS in a mouse model.


Asunto(s)
Células Endoteliales , Inflamación , Ratones Noqueados , Lesión Pulmonar Inducida por Ventilación Mecánica , Oxidorreductasa que Contiene Dominios WW , Animales , Oxidorreductasa que Contiene Dominios WW/metabolismo , Oxidorreductasa que Contiene Dominios WW/genética , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología , Inflamación/metabolismo , Inflamación/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/patología , Lesión Pulmonar Inducida por Ventilación Mecánica/genética , Citocinas/metabolismo , Ratones Endogámicos C57BL , Técnicas de Silenciamiento del Gen , Masculino , Pulmón/metabolismo , Pulmón/patología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética
4.
Blood ; 137(9): 1208-1218, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33181835

RESUMEN

Previous reports indicate that IL18 is a novel candidate gene for diastolic dysfunction in sickle cell disease (SCD)-related cardiomyopathy. We hypothesize that interleukin-18 (IL-18) mediates the development of cardiomyopathy and ventricular tachycardia (VT) in SCD. Compared with control mice, a humanized mouse model of SCD exhibited increased cardiac fibrosis, prolonged duration of action potential, higher VT inducibility in vivo, higher cardiac NF-κB phosphorylation, and higher circulating IL-18 levels, as well as reduced voltage-gated potassium channel expression, which translates to reduced transient outward potassium current (Ito) in isolated cardiomyocytes. Administering IL-18 to isolated mouse hearts resulted in VT originating from the right ventricle and further reduced Ito in SCD mouse cardiomyocytes. Sustained IL-18 inhibition via IL-18-binding protein resulted in decreased cardiac fibrosis and NF-κB phosphorylation, improved diastolic function, normalized electrical remodeling, and attenuated IL-18-mediated VT in SCD mice. Patients with SCD and either myocardial fibrosis or increased QTc displayed greater IL18 gene expression in peripheral blood mononuclear cells (PBMCs), and QTc was strongly correlated with plasma IL-18 levels. PBMC-derived IL18 gene expression was increased in patients who did not survive compared with those who did. IL-18 is a mediator of sickle cell cardiomyopathy and VT in mice and a novel therapeutic target in patients at risk for sudden death.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Cardiomiopatías/etiología , Interleucina-18/sangre , Taquicardia Ventricular/etiología , Adulto , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/fisiopatología , Animales , Arritmias Cardíacas/sangre , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Cardiomiopatías/sangre , Cardiomiopatías/fisiopatología , Humanos , Interleucina-18/análisis , Masculino , Ratones , Taquicardia Ventricular/sangre , Taquicardia Ventricular/fisiopatología , Adulto Joven
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108634

RESUMEN

Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease characterized by the progressive elevation of pulmonary arterial pressures. It is becoming increasingly apparent that inflammation contributes to the pathogenesis and progression of PAH. Several viruses are known to cause PAH, such as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), human endogenous retrovirus K(HERV-K), and human immunodeficiency virus (HIV), in part due to acute and chronic inflammation. In this review, we discuss the connections between HERV-K, HIV, SARS-CoV-2, and PAH, to stimulate research regarding new therapeutic options and provide new targets for the treatment of the disease.


Asunto(s)
COVID-19 , Retrovirus Endógenos , Infecciones por VIH , Hipertensión Arterial Pulmonar , Humanos , VIH , SARS-CoV-2 , Hipertensión Pulmonar Primaria Familiar , Inflamación
6.
Am J Physiol Lung Cell Mol Physiol ; 322(6): L890-L897, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35503995

RESUMEN

In patients with sickle cell disease (SCD), acute chest syndrome (ACS) is a common form of acute lung injury and a major cause of morbidity and mortality. The pathophysiology of ACS is complex, and hemin, the prosthetic moiety of hemoglobin, has been implicated in endothelial cell (EC) activation and subsequent acute lung injury (ALI) and ACS in vitro and in animal studies. Here, we examined the role of cortactin (CTTN), a cytoskeletal protein that regulates EC function, in response to hemin-induced ALI and ACS. Cortactin heterozygous (Cttn+/-) mice (n = 8) and their wild-type siblings (n = 8) were irradiated and subsequently received bone marrow cells (BMCs) extruded from the femurs of SCD mice (SS) to generate SS Cttn+/- and SS CttnWT chimeras. Following hemoglobin electrophoretic proof of BMC transplantation, the mice received 35 µmol/kg of hemin. Within 24 h, surviving mice were euthanized, and bronchoalveolar fluid (BAL) and lung samples were analyzed. For in vitro studies, human lung microvascular endothelial cells (HLMVECs) were used to determine hemin-induced changes in gene expression and reactive oxygen species (ROS) generation in cortactin deficiency and control conditions. When compared with wild-type littermates, the mortality for SS Cttn+/- mice trended to be lower after hemin infusion and these mice exhibited less severe lung injury and less necroptotic cell death. In vitro studies confirmed that cortactin deficiency is protective against hemin-induced injury in HMLVECs, by decreasing protein expression of p38/HSP27, improving cell barrier function, and decreasing the production of ROS. Further studies examining the role of CTTN in ACS are warranted and may open a new avenue of potential treatment for this devastating disease.


Asunto(s)
Lesión Pulmonar Aguda , Anemia de Células Falciformes , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/prevención & control , Anemia de Células Falciformes/complicaciones , Animales , Cortactina/genética , Cortactina/metabolismo , Células Endoteliales/metabolismo , Hemina/metabolismo , Hemina/farmacología , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo
7.
Int J Mol Sci ; 23(5)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35269553

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by (mal)adaptive remodeling of the pulmonary vasculature, which is associated with inflammation, fibrosis, thrombosis, and neovascularization. Vascular remodeling in PAH is associated with cellular metabolic and inflammatory reprogramming that induce profound endothelial and smooth muscle cell phenotypic changes. Multiple signaling pathways and regulatory loops act on metabolic and inflammatory mediators which influence cellular behavior and trigger pulmonary vascular remodeling in vivo. This review discusses the role of bioenergetic and inflammatory impairments in PAH development.


Asunto(s)
Músculo Liso Vascular/patología , Hipertensión Arterial Pulmonar/patología , Arteria Pulmonar/patología , Animales , Metabolismo Energético , Humanos , Músculo Liso Vascular/inmunología , Hipertensión Arterial Pulmonar/inmunología , Arteria Pulmonar/inmunología , Transducción de Señal , Remodelación Vascular
8.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498853

RESUMEN

Sphingosine kinase 1 (SPHK1) and the sphingosine-1-phosphate (S1P) signaling pathway have been shown to play a role in pulmonary arterial hypertension (PAH). S1P is an important stimulus for pulmonary artery smooth muscle cell (PASMC) proliferation and pulmonary vascular remodeling. We aimed to examine the specific roles of SPHK1 in PASMCs during pulmonary hypertension (PH) progression. We generated smooth muscle cell-specific, Sphk1-deficient (Sphk1f/f TaglnCre+) mice and isolated Sphk1-deficient PASMCs from SPHK1 knockout mice. We demonstrated that Sphk1f/f TaglnCre+ mice are protected from hypoxia or hypoxia/Sugen-mediated PH, and pulmonary vascular remodeling and that Sphk1-deficient PASMCs are less proliferative compared with ones isolated from wild-type (WT) siblings. S1P or hypoxia activated yes-associated protein 1 (YAP1) signaling by enhancing its translocation to the nucleus, which was dependent on SPHK1 enzymatic activity. Further, verteporfin, a pharmacologic YAP1 inhibitor, attenuated the S1P-mediated proliferation of hPASMCs, hypoxia-mediated PH, and pulmonary vascular remodeling in mice and hypoxia/Sugen-mediated severe PH in rats. Smooth muscle cell-specific SPHK1 plays an essential role in PH via YAP1 signaling, and YAP1 inhibition may have therapeutic potential in treating PH.


Asunto(s)
Hipertensión Pulmonar , Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteínas Señalizadoras YAP , Animales , Ratones , Ratas , Proliferación Celular , Células Cultivadas , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Miocitos del Músculo Liso/metabolismo , Arteria Pulmonar/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Remodelación Vascular , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas Señalizadoras YAP/metabolismo
9.
Am J Respir Cell Mol Biol ; 64(1): 89-99, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33058734

RESUMEN

A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle-treated controls. In separate studies, endothelial (EC)-specific WWOX knockout (KO) versus WWOX flox control mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+ CD45-cells. These were grown in culture, confirmed to be WWOX deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing as well as an FITC dextran transwell assay for their barrier properties during methicillin-resistant Staphylococcus aureus or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to cells from WWOX flox controls during either methicillin-resistant S. aureus or LPS treatment as measured by both electric cell impedance sensing and the transwell assay. The increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.


Asunto(s)
Fumar Cigarrillos/efectos adversos , Regulación hacia Abajo/efectos de los fármacos , Cigarrillo Electrónico a Vapor/efectos adversos , Pulmón/efectos de los fármacos , Nicotina/efectos adversos , Síndrome de Dificultad Respiratoria/inducido químicamente , Oxidorreductasa que Contiene Dominios WW/metabolismo , Animales , Humanos , Pulmón/metabolismo , Masculino , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Ratones Endogámicos C57BL , Síndrome de Dificultad Respiratoria/metabolismo , Infecciones Estafilocócicas/metabolismo , Nicotiana/efectos adversos , Productos de Tabaco/efectos adversos
10.
Br J Haematol ; 194(4): 767-778, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34268729

RESUMEN

Haemolysis and vaso-occlusion underlie multi-organ system complications in sickle cell disease (SCD). We assessed real-world biomarkers in University of Illinois adult SCD patients, categorised as severe (HbSS/Sß0 -thalassaemia; n = 342) or mild (HbSC/Sß+ -thalassaemia; n = 100) genotypes and stratified according to treatment. African-American controls from the National Health and Nutrition Examination Survey (NHANES) were matched with each genotype category. Most measures of haemolysis, anaemia, inflammation and function of kidneys, liver and lungs differed markedly in untreated severe genotype patients compared to NHANES controls. These same biomarkers were significantly closer to the NHANES control range in untreated mild versus severe genotype patients, but they were not improved in severe genotype patients receiving treatment with hydroxycarbamide or blood transfusions, except that haemoglobin and HbF were higher with hydroxycarbamide. Systolic blood pressures did not differ among the SCD and NHANES groups, but diastolic pressures were higher in mild genotype patients. Ferritin in severe genotype patients on chronic transfusions was 50-fold higher than NHANES controls. The cross-sectional real-world biomarkers of patients on hydroxycarbamide or transfusions were not markedly improved compared to untreated patients. This may be due partly to poor compliance or more severe disease. Our findings highlight the need for more effective treatments.


Asunto(s)
Anemia de Células Falciformes/diagnóstico , Adulto , Negro o Afroamericano/genética , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Antidrepanocíticos/uso terapéutico , Transfusión Sanguínea , Estudios Transversales , Femenino , Genotipo , Humanos , Hidroxiurea/uso terapéutico , Masculino , Índice de Severidad de la Enfermedad , Adulto Joven
11.
Curr Opin Pulm Med ; 27(5): 319-328, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34224433

RESUMEN

PURPOSE OF REVIEW: Sickle cell disease (SCD), one of the most common genetic diseases in the world, is characterized by repeated episodes of hemolysis and vaso-occlusion. Hemolytic anemia is a risk factor for the development of pulmonary hypertension, and currently SCD-related pulmonary hypertension is classified as World Health Organization group 5 pulmonary hypertension. Patients with SCD-related pulmonary hypertension have unique hemodynamics, multiple comorbidities, and distinct phenotypes that may contribute to the development of pulmonary hypertension. RECENT FINDINGS: SCD-related pulmonary hypertension is defined as a mean pulmonary artery pressure >20 mmHg, a pulmonary artery occlusion pressure ≤15 mmHg and relatively low pulmonary vascular resistance (>2 Wood units) rather than the traditional definition of ≥3 Wood units, an important distinction due to a baseline high-cardiac output state in the setting of chronic anemia and low vascular resistance. Diastolic dysfunction is frequently identified in this patient population and right heart catheterization is essential to determine if combined pre- and postcapillary pulmonary hypertension is present. Thromboembolism is common among patients with SCD, and screening for chronic thromboembolic pulmonary hypertension is essential. Data regarding advanced therapies are limited. Primary treatment options include targeting correction of their primary hemoglobinopathy as well as aggressive management of underlying comorbid conditions. SUMMARY: SCD-related pulmonary hypertension is common among patients with SCD and is associated with increased mortality. A high index of suspicion is warranted during evaluation to identify all potential factors that may be contributing to disease.


Asunto(s)
Anemia de Células Falciformes , Hipertensión Pulmonar , Anemia de Células Falciformes/complicaciones , Cateterismo Cardíaco , Hemodinámica , Humanos , Hipertensión Pulmonar/epidemiología , Hipertensión Pulmonar/etiología , Presión Esfenoidal Pulmonar
12.
Arterioscler Thromb Vasc Biol ; 40(6): 1543-1558, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268788

RESUMEN

OBJECTIVE: Pulmonary hypertension (PH) due to left heart disease (group 2), especially in the setting of heart failure with preserved ejection fraction (HFpEF), is the most common cause of PH worldwide; however, at present, there is no proven effective therapy available for its treatment. PH-HFpEF is associated with insulin resistance and features of metabolic syndrome. The stable prostacyclin analog, treprostinil, is an effective and widely used Food and Drug Administration-approved drug for the treatment of pulmonary arterial hypertension. While the effect of treprostinil on metabolic syndrome is unknown, a recent study suggests that the prostacyclin analog beraprost can improve glucose intolerance and insulin sensitivity. We sought to evaluate the effectiveness of treprostinil in the treatment of metabolic syndrome-associated PH-HFpEF. Approach and Results: Treprostinil treatment was given to mice with mild metabolic syndrome-associated PH-HFpEF induced by high-fat diet and to SU5416/obese ZSF1 rats, a model created by the treatment of rats with a more profound metabolic syndrome due to double leptin receptor defect (obese ZSF1) with a vascular endothelial growth factor receptor blocker SU5416. In high-fat diet-exposed mice, chronic treatment with treprostinil reduced hyperglycemia and pulmonary hypertension. In SU5416/Obese ZSF1 rats, treprostinil improved hyperglycemia with similar efficacy to that of metformin (a first-line drug for type 2 diabetes mellitus); the glucose-lowering effect of treprostinil was further potentiated by the combined treatment with metformin. Early treatment with treprostinil in SU5416/Obese ZSF1 rats lowered pulmonary pressures, and a late treatment with treprostinil together with metformin improved pulmonary artery acceleration time to ejection time ratio and tricuspid annular plane systolic excursion with AMPK (AMP-activated protein kinase) activation in skeletal muscle and the right ventricle. CONCLUSIONS: Our data suggest a potential use of treprostinil as an early treatment for mild metabolic syndrome-associated PH-HFpEF and that combined treatment with treprostinil and metformin may improve hyperglycemia and cardiac function in a more severe disease.


Asunto(s)
Epoprostenol/análogos & derivados , Insuficiencia Cardíaca/complicaciones , Hiperglucemia/tratamiento farmacológico , Hipertensión Pulmonar/tratamiento farmacológico , Metformina/uso terapéutico , Volumen Sistólico/fisiología , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Antihipertensivos , Dieta Alta en Grasa , Epoprostenol/uso terapéutico , Corazón/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Hipoglucemiantes , Resistencia a la Insulina , Masculino , Síndrome Metabólico , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/fisiopatología , Ratas , Receptores de Leptina/genética
13.
Crit Care Med ; 48(9): e753-e760, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32618694

RESUMEN

OBJECTIVES: Mean arterial pressure is critically important in patients with cirrhosis in the ICU, however, there is limited data to guide therapies and targets. DESIGN: Retrospective observational study. SETTING: Tertiary care ICU. PATIENTS: Two hundred and seventy-three critically ill patients with cirrhosis. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We performed a comprehensive time-weighted mean arterial pressure analysis (time-weighted-average-mean arterial pressure and cumulative-time-below various mean arterial pressure-thresholds) during the first 24-hours after ICU admission (median: 25 mean arterial pressure measurements per-patient). Time-weighted-average-mean arterial pressure captures both the severity and duration of hypotension below a mean arterial pressure threshold and cumulative-time-below is the total time spent below a mean arterial pressure threshold. Individual univariable and multivariable logistic regression models were assessed for each time-weighted-average-mean arterial pressure and cumulative-time-below mean arterial pressure threshold (55, 60, 65, 70, and 75 mm Hg) for ICU-mortality. Time-weighted-average-mean arterial pressure: for 1 mm Hg decrease in mean arterial pressure below 75, 70, 65, 60, and 55 mm Hg, the odds for ICU-mortality were 14%, 18%, 26%, 41%, and 74%, respectively (p < 0.01, all thresholds). The association between time-weighted-average-mean arterial pressure and ICU-mortality for each threshold remained significant after adjusting for model for end-stage liver disease-sodium score, mechanical ventilation, vasopressor use, renal replacement therapy, grade 3/4 hepatic encephalopathy, WBC count, and albumin. Cumulative-time-below: odds for ICU-mortality were 4%, 6%, 10%, 12%, and 12% for each-hour spent below 75, 70, 65, 60, and 55 mm Hg, respectively. In the adjusted models, significant associations only remained for mean arterial pressure less than 65 mm Hg (odds ratio, 1.07; 95% CI, 1.00-1.14; p = 0.05) and < 60 mm Hg (odds ratio, 1.10; 95% CI, 1.01-1.18; p = 0.04). CONCLUSIONS: These data suggest that maintaining a mean arterial pressure of greater than 65 mm Hg may be a reasonable target in patients with cirrhosis admitted to the ICU. However, further prospective randomized trials are needed to determine the optimal mean arterial pressure-targets in this patient population.


Asunto(s)
Presión Arterial/fisiología , Enfermedad Crítica , Mortalidad Hospitalaria/tendencias , Cirrosis Hepática/mortalidad , Cirrosis Hepática/patología , Adulto , Anciano , Femenino , Humanos , Hipotensión/patología , Unidades de Cuidados Intensivos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Índice de Severidad de la Enfermedad , Centros de Atención Terciaria
14.
Blood ; 132(17): 1770-1780, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30206115

RESUMEN

Hemoglobinopathies are caused by genetic mutations that result in abnormal hemoglobin molecules, resulting in hemolytic anemia. Chronic complications involving the lung parenchyma, vasculature, and cardiac function in hemoglobinopathies result in impaired gas exchange, resulting in tissue hypoxia. Hypoxia is defined as the deficiency in the amount of oxygen reaching the tissues of the body and is prevalent in patients with hemoglobinopathies, and its cause is often multifactorial. Chronic hypoxia in hemoglobinopathies is often a sign of disease severity and is associated with increased morbidity and mortality. Therefore, a thorough understanding of the pathophysiology of hypoxia in these disease processes is important in order to appropriately treat the underlying cause and prevent complications. In this article, we discuss management of hypoxia based on three different cases: sickle cell disease, ß-thalassemia, and hereditary spherocytosis. These cases are used to review the current understanding of the disease pathophysiology, demonstrate the importance of a thorough clinical history and physical examination, explore diagnostic pathways, and review the current management.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Hipoxia/etiología , Hipoxia/terapia , Esferocitosis Hereditaria/complicaciones , Talasemia beta/complicaciones , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Arterioscler Thromb Vasc Biol ; 39(6): 1191-1202, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30943774

RESUMEN

Objective- To determine whether pulmonary arterial hypertension is associated with endothelial cell (EC)-Cav-1 (caveolin-1) depletion, EC-derived extracellular vesicle cross talk with macrophages, and proliferation of Cav-1 depleted ECs via TGF-ß (transforming growth factor-ß) signaling. Approach and Results- Pulmonary vascular disease was induced in Sprague-Dawley rats by exposure to a single injection of VEGFRII (vascular endothelial growth factor receptor II) antagonist SU5416 (Su) followed by hypoxia (Hx) plus normoxia (4 weeks each-HxSu model) and in WT (wild type; Tie2.Cre-; Cav1 lox/lox) and EC- Cav1-/- (Tie2.Cre+; Cav1 fl/fl) mice (Hx: 4 weeks). We observed reduced lung Cav-1 expression in the HxSu rat model in association with increased Cav-1+ extracellular vesicle shedding into the circulation. Whereas WT mice exposed to hypoxia exhibited increased right ventricular systolic pressure and pulmonary microvascular thickening compared with the group maintained in normoxia, the remodeling was further increased in EC- Cav1-/- mice indicating EC Cav-1 expression protects against hypoxia-induced pulmonary hypertension. Depletion of EC Cav-1 was associated with reduced BMPRII (bone morphogenetic protein receptor II) expression, increased macrophage-dependent TGF-ß production, and activation of pSMAD2/3 signaling in the lung. In vitro, in the absence of Cav-1, eNOS (endothelial NO synthase) dysfunction was implicated in the mechanism of EC phenotype switching. Finally, reduced expression of EC Cav-1 in lung histological sections from human pulmonary arterial hypertension donors was associated with increased plasma concentration of Cav-1, extracellular vesicles, and TGF-ß, indicating Cav-1 may be a plasma biomarker of vascular injury and key determinant of TGF-ß-induced pulmonary vascular remodeling. Conclusions- EC Cav-1 depletion occurs, in part, via Cav-1+ extracellular vesicle shedding into the circulation, which contributes to increased TGF-ß signaling, EC proliferation, vascular remodeling, and pulmonary arterial hypertension.


Asunto(s)
Caveolina 1/deficiencia , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Remodelación Vascular , Adolescente , Adulto , Anciano , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Estudios de Casos y Controles , Caveolina 1/genética , Proliferación Celular , Modelos Animales de Enfermedad , Células Endoteliales/patología , Vesículas Extracelulares/patología , Femenino , Humanos , Hipoxia/complicaciones , Indoles , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Hipertensión Arterial Pulmonar/etiología , Hipertensión Arterial Pulmonar/patología , Pirroles , Ratas Sprague-Dawley , Transducción de Señal , Proteínas Smad/metabolismo , Adulto Joven
16.
Blood ; 129(22): 3009-3016, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28373264

RESUMEN

Sickle cell disease (SCD) complications are associated with increased morbidity and risk of mortality. We sought to identify a circulating transcriptomic profile predictive of these poor outcomes in SCD. Training and testing cohorts consisting of adult patients with SCD were recruited and prospectively followed. A pathway-based signature derived from grouping peripheral blood mononuclear cell transcriptomes distinguished 2 patient clusters with differences in survival in the training cohort. These findings were validated in a testing cohort in which the association between cluster 1 molecular profiling and mortality remained significant in a fully adjusted model. In a third cohort of West African children with SCD, cluster 1 differentiated SCD severity using a published scoring index. Finally, a risk score composed of assigning weights to cluster 1 profiling, along with established clinical risk factors using tricuspid regurgitation velocity, white blood cell count, history of acute chest syndrome, and hemoglobin levels, demonstrated a higher hazard ratio for mortality in both the training and testing cohorts compared with clinical risk factors or cluster 1 data alone. Circulating transcriptomic profiles are a powerful method to risk-stratify severity of disease and poor outcomes in both children and adults, respectively, with SCD and highlight potential associated molecular pathways.


Asunto(s)
Anemia de Células Falciformes/genética , Síndrome Torácico Agudo/genética , Adulto , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/mortalidad , Niño , Estudios de Cohortes , Femenino , Hemoglobinas/metabolismo , Humanos , Estimación de Kaplan-Meier , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Transcriptoma , Insuficiencia de la Válvula Tricúspide/genética , Adulto Joven
17.
Arterioscler Thromb Vasc Biol ; 38(9): 2065-2078, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30026274

RESUMEN

Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.


Asunto(s)
Presión Sanguínea/fisiología , Caveolina 1/metabolismo , Conexinas/metabolismo , Homeostasis , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Adenosina Trifosfato/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacología , Animales , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Masculino , Ratones Noqueados , Músculo Liso Vascular/citología , Músculo Liso Vascular/inervación , Fenilefrina/farmacología , Sistema Nervioso Simpático/fisiología , Vasoconstricción/fisiología
19.
Circulation ; 135(16): 1532-1546, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28202489

RESUMEN

BACKGROUND: Pulmonary arterial hypertension is a severe and progressive disease, a hallmark of which is pulmonary vascular remodeling. Nicotinamide phosphoribosyltransferase (NAMPT) is a cytozyme that regulates intracellular nicotinamide adenine dinucleotide levels and cellular redox state, regulates histone deacetylases, promotes cell proliferation, and inhibits apoptosis. We hypothesized that NAMPT promotes pulmonary vascular remodeling and that inhibition of NAMPT could attenuate pulmonary hypertension. METHODS: Plasma, mRNA, and protein levels of NAMPT were measured in the lungs and isolated pulmonary artery endothelial cells from patients with pulmonary arterial hypertension and in the lungs of rodent models of pulmonary hypertension. Nampt+/- mice were exposed to 10% hypoxia and room air for 4 weeks, and the preventive and therapeutic effects of NAMPT inhibition were tested in the monocrotaline and Sugen hypoxia models of pulmonary hypertension. The effects of NAMPT activity on proliferation, migration, apoptosis, and calcium signaling were tested in human pulmonary artery smooth muscle cells. RESULTS: Plasma and mRNA and protein levels of NAMPT were increased in the lungs and isolated pulmonary artery endothelial cells from patients with pulmonary arterial hypertension, as well as in lungs of rodent models of pulmonary hypertension. Nampt+/- mice were protected from hypoxia-mediated pulmonary hypertension. NAMPT activity promoted human pulmonary artery smooth muscle cell proliferation via a paracrine effect. In addition, recombinant NAMPT stimulated human pulmonary artery smooth muscle cell proliferation via enhancement of store-operated calcium entry by enhancing expression of Orai2 and STIM2. Last, inhibition of NAMPT activity attenuated monocrotaline and Sugen hypoxia-induced pulmonary hypertension in rats. CONCLUSIONS: Our data provide evidence that NAMPT plays a role in pulmonary vascular remodeling and that its inhibition could be a potential therapeutic target for pulmonary arterial hypertension.


Asunto(s)
Hipertensión Pulmonar/fisiopatología , Nicotinamida Fosforribosiltransferasa/uso terapéutico , Arteria Pulmonar/fisiopatología , Remodelación Vascular/efectos de los fármacos , Animales , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotinamida Fosforribosiltransferasa/administración & dosificación , Nicotinamida Fosforribosiltransferasa/farmacología , Ratas , Ratas Sprague-Dawley , Transfección
20.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L461-L472, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167124

RESUMEN

Sphingosine kinase 1 (SphK1) upregulation is associated with pathologic pulmonary vascular remodeling in pulmonary arterial hypertension (PAH), but the mechanisms controlling its expression are undefined. In this study, we sought to characterize the regulation of SphK1 expression by micro-RNAs (miRs). In silico analysis of the SphK1 3'-untranslated region identified several putative miR binding sites, with miR-1-3p (miR-1) being the most highly predicted target. Therefore we further investigated the role of miR-1 in modulating SphK1 expression and characterized its effects on the phenotype of pulmonary artery smooth muscle cells (PASMCs) and the development of experimental pulmonary hypertension in vivo. Our results demonstrate that miR-1 is downregulated by hypoxia in PASMCs and can directly inhibit SphK1 expression. Overexpression of miR-1 in human PASMCs inhibits basal and hypoxia-induced proliferation and migration. Human PASMCs isolated from PAH patients exhibit reduced miR-1 expression. We also demonstrate that miR-1 is downregulated in mouse lung tissues during experimental hypoxia-mediated pulmonary hypertension (HPH), consistent with upregulation of SphK1. Furthermore, administration of miR-1 mimics in vivo prevented the development of HPH in mice and attenuated induction of SphK1 in PASMCs. These data reveal the importance of miR-1 in regulating SphK1 expression during hypoxia in PASMCs. A pivotal role is played by miR-1 in pulmonary vascular remodeling, including PASMC proliferation and migration, and its overexpression protects from the development of HPH in vivo. These studies improve our understanding of the molecular mechanisms underlying the pathogenesis of pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar/patología , Hipoxia/fisiopatología , MicroARNs/genética , Músculo Liso Vascular/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Arteria Pulmonar/patología , Remodelación Vascular , Animales , Movimiento Celular , Proliferación Celular , Células Cultivadas , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Arteria Pulmonar/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA