RESUMEN
Regionalized immune surveillance relies on the concerted efforts of diverse memory T cell populations. Of these, tissue-resident memory T (TRM) cells are strategically positioned in barrier tissues, where they enable efficient frontline defense against infections and cancer. However, the long-term persistence of these cells has been implicated in a variety of immune-mediated pathologies. Consequently, modulating TRM cell populations represents an attractive strategy for novel vaccination and therapeutic interventions against tissue-based diseases. Here, we provide an updated overview of TRM cell heterogeneity and function across tissues and disease states. We discuss mechanisms of TRM cell-mediated immune protection and their potential contributions to autoimmune disorders. Finally, we examine how TRM cell responses might be durably boosted or dampened for therapeutic gain.
Asunto(s)
Memoria Inmunológica , Células T de Memoria , Humanos , Animales , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/terapia , Especificidad de Órganos/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Vigilancia InmunológicaRESUMEN
Our current knowledge of human memory CD8+ T cells is derived largely from studies of the intravascular space. However, emerging data are starting to challenge some of the dogmas based on this work, suggesting that a conceptual revision may be necessary. In this review, we provide a brief history of the field and summarize the biology of circulating and tissue-resident memory CD8+ T cells, which are ultimately responsible for effective immune surveillance. We also incorporate recent findings into a biologically integrated model of human memory CD8+ T cell differentiation. Finally, we address how future innovative human studies could improve our understanding of anatomically localized CD8+ T cells to inform the development of more effective immunotherapies and vaccines, the need for which has been emphasized by the global struggle to contain severe acute respiratory syndrome coronavirus 2.
Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , Activación de Linfocitos , Células T de Memoria , Memoria InmunológicaRESUMEN
Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-ß-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-ß-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-ß-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.
Asunto(s)
Memoria Inmunológica , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Tissue-resident memory T (TRM) cells are non-recirculating cells that exist throughout the body. Although TRM cells in various organs rely on common transcriptional networks to establish tissue residency, location-specific factors adapt these cells to their tissue of lodgment. Here we analyze TRM cell heterogeneity between organs and find that the different environments in which these cells differentiate dictate TRM cell function, durability and malleability. We find that unequal responsiveness to TGFß is a major driver of this diversity. Notably, dampened TGFß signaling results in CD103- TRM cells with increased proliferative potential, enhanced function and reduced longevity compared with their TGFß-responsive CD103+ TRM counterparts. Furthermore, whereas CD103- TRM cells readily modified their phenotype upon relocation, CD103+ TRM cells were comparatively resistant to transdifferentiation. Thus, despite common requirements for TRM cell development, tissue adaptation of these cells confers discrete functional properties such that TRM cells exist along a spectrum of differentiation potential that is governed by their local tissue microenvironment.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/inmunología , Plasticidad de la Célula/inmunología , Microambiente Celular/inmunología , Memoria Inmunológica/inmunología , Animales , Antígenos CD/inmunología , Linfocitos T CD8-positivos/citología , Femenino , Cadenas alfa de Integrinas/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
The memory CD8+ T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8+ T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (TRM) cells and circulating memory T (TCIRC) cells develop along distinct epigenetic trajectories. We identified organ-specific transcriptional regulators of TRM cell development, including FOSB, FOS, FOSL1, and BACH2, and defined an epigenetic signature common to TRM cells across organs. Finally, we found that although terminal TEX cells share accessible regulatory elements with TRM cells, they are defined by TEX-specific epigenetic features absent from TRM cells. Together, this comprehensive data resource shows that TRM cell development is accompanied by dynamic transcriptome alterations and chromatin accessibility changes that direct tissue-adapted and functionally distinct T cell states.
Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Linfocitos T CD8-positivos , Diferenciación Celular , Epigénesis Genética , Epigenómica , Memoria Inmunológica , Células T de Memoria , Animales , Diferenciación Celular/inmunología , Diferenciación Celular/genética , Ratones , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Memoria Inmunológica/genética , Memoria Inmunológica/inmunología , Linfocitos T CD8-positivos/inmunología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Epigenómica/métodos , Ratones Endogámicos C57BL , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Transcriptoma , Cromatina/metabolismoRESUMEN
Tissue-resident memory T (TRM) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common TRM cell fate remains poorly understood. Here, we show that whereas skin TRM cells strictly require transforming growth factor ß (TGF-ß) for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-ß-independent tissue residency program in the liver and synergizing with TGF-ß to drive TRM cells in the small intestine. We found that RA was required for the long-term maintenance of intestinal TRM populations, in part by impeding their retrograde migration. Moreover, enhanced RA signaling modulated TRM cell phenotype and function, a phenomenon mirrored in mice with increased microbial diversity. Together, our findings reveal RA as a fundamental component of the host-environment interaction that directs immunosurveillance in tissues.
RESUMEN
Memory CD8+ T cells can be broadly divided into circulating (TCIRCM) and tissue-resident memory T (TRM) populations. Despite well-defined migratory and transcriptional differences, the phenotypic and functional delineation of TCIRCM and TRM cells, particularly across tissues, remains elusive. Here, we utilized an antibody screening platform and machine learning prediction pipeline (InfinityFlow) to profile >200 proteins in TCIRCM and TRM cells in solid organs and barrier locations. High-dimensional analyses revealed unappreciated heterogeneity within TCIRCM and TRM cell lineages across nine different organs after either local or systemic murine infection models. Additionally, we demonstrated the relative effectiveness of strategies allowing for the selective ablation of TCIRCM or TRM populations across organs and identified CD55, KLRG1, CXCR6, and CD38 as stable markers for characterizing memory T cell function during inflammation. Together, these data and analytical framework provide an in-depth resource for memory T cell classification in both steady-state and inflammatory conditions.
Asunto(s)
Linfocitos T CD8-positivos , Células T de Memoria , Ratones , Animales , Linaje de la Célula , Memoria InmunológicaRESUMEN
Although tissue-resident memory T cells (TRM cells) are critical in fighting infection, their fate after local pathogen re-encounter is unknown. Here we found that skin TRM cells engaged virus-infected cells, proliferated in situ in response to local antigen encounter and did not migrate out of the epidermis, where they exclusively reside. As a consequence, secondary TRM cells formed from pre-existing TRM cells, as well as from precursors recruited from the circulation. Newly recruited antigen-specific or bystander TRM cells were generated in the skin without displacement of the pre-existing TRM cell pool. Thus, pre-existing skin TRM cell populations are not displaced after subsequent infections, which enables multiple TRM cell specificities to be stably maintained within the tissue.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Piel/inmunología , Animales , Proliferación Celular/fisiología , Herpes Simple/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
The sympathetic nervous system (SNS) controls various physiological functions via the neurotransmitter noradrenaline. Activation of the SNS in response to psychological or physical stress is frequently associated with weakened immunity. Here, we investigated how adrenoceptor signaling influences leukocyte behavior. Intravital two-photon imaging after injection of noradrenaline revealed transient inhibition of CD8+ and CD4+ T cell locomotion in tissues. Expression of ß-adrenergic receptor in hematopoietic cells was not required for NA-mediated inhibition of motility. Rather, chemogenetic activation of the SNS or treatment with adrenergic receptor agonists induced vasoconstriction and decreased local blood flow, resulting in abrupt hypoxia that triggered rapid calcium signaling in leukocytes and halted cell motility. Oxygen supplementation reversed these effects. Treatment with adrenergic receptor agonists impaired T cell responses induced in response to viral and parasitic infections, as well as anti-tumor responses. Thus, stimulation of the SNS impairs leukocyte mobility, providing a mechanistic understanding of the link between adrenergic receptors and compromised immunity.
Asunto(s)
Adrenérgicos/inmunología , Movimiento Celular/inmunología , Inmunidad/inmunología , Leucocitos/inmunología , Sistema Nervioso Simpático/inmunología , Animales , Señalización del Calcio/inmunología , Línea Celular Tumoral , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Receptores Adrenérgicos/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunologíaRESUMEN
Mucosal-associated invariant T cells (MAIT cells) detect microbial vitamin B2 derivatives presented by the antigen-presenting molecule MR1. Here we defined three developmental stages and checkpoints for the MAIT cell lineage in humans and mice. Stage 1 and stage 2 MAIT cells predominated in thymus, while stage 3 cells progressively increased in abundance extrathymically. Transition through each checkpoint was regulated by MR1, whereas the final checkpoint that generated mature functional MAIT cells was controlled by multiple factors, including the transcription factor PLZF and microbial colonization. Furthermore, stage 3 MAIT cell populations were expanded in mice deficient in the antigen-presenting molecule CD1d, suggestive of a niche shared by MAIT cells and natural killer T cells (NKT cells). Accordingly, this study maps the developmental pathway and checkpoints that control the generation of functional MAIT cells.
Asunto(s)
Diferenciación Celular/inmunología , Células T Invariantes Asociadas a Mucosa/citología , Células T Invariantes Asociadas a Mucosa/fisiología , Timo/inmunología , Timo/metabolismo , Animales , Antígenos CD1d/genética , Biomarcadores , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Inmunofenotipificación , Células Progenitoras Linfoides/inmunología , Células Progenitoras Linfoides/metabolismo , Masculino , Ratones , Ratones Noqueados , MicroARNs/genéticaRESUMEN
Factors regulating the differentiation of tissue-resident memory T (TRM) cells and tumor-infiltrating lymphocytes (TILs) are incompletely understood. In this issue of Immunity, Li et al. identify Bhlhe40 as a transcriptional regulator of CD8+ TRM cell and TIL persistence and activity by orchestrating metabolic and epigenetic programming.
Asunto(s)
Memoria Inmunológica , Factores de Transcripción , Linfocitos T CD8-positivos , Linfocitos Infiltrantes de Tumor , Control Social FormalRESUMEN
Human tissue-resident memory T (TRM) cells seeded early in life undergo an age-associated functional maturation and residency acquisition throughout childhood.
Asunto(s)
Envejecimiento , Células T de Memoria , Niño , Humanos , Especificidad de ÓrganosRESUMEN
Tissue-resident memory T cells (T(RM) cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103(+)CD8(+) T(RM) cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-ß (TGF-ß) was required for the formation of these long-lived memory cells. Notably, differentiation into T(RM) cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues.
Asunto(s)
Antígenos CD/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Cadenas alfa de Integrinas/inmunología , Transducción de Señal/inmunología , Piel/inmunología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/inmunología , Antígenos de Diferenciación de Linfocitos T/metabolismo , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Citometría de Flujo , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Interacciones Huésped-Patógeno/inmunología , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Interleucina-15/genética , Interleucina-15/inmunología , Interleucina-15/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Lectinas Tipo C/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos , Ratones Noqueados , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores Inmunológicos/genética , Receptores Inmunológicos/inmunología , Receptores Inmunológicos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/inmunología , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Piel/metabolismo , Piel/virología , Transcriptoma/genética , Transcriptoma/inmunologíaRESUMEN
Efficient generation of tissue-resident memory T (TRM) cells is essential for long-lived immune protection in barrier tissues. Peng et al. now show that the costimulatory molecule ICOS enhances CD8+ TRM cell lodgment by promoting early tissue retention.
Asunto(s)
Internado y Residencia , Vendajes , Linfocitos T CD8-positivos/inmunología , Humanos , Memoria Inmunológica/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles , Factores de TranscripciónRESUMEN
Panel j was inadvertently labelled as panel k in the caption to Fig. 4. Similarly, 'Fig. 4k' should have been 'Fig. 4j' in the sentence beginning 'TNF-α-deficient gBT-I cells were '. In addition, the surname of author Umaimainthan Palendira was misspelled 'Palendria'. These errors have been corrected online.
RESUMEN
The immune system can suppress tumour development both by eliminating malignant cells and by preventing the outgrowth and spread of cancer cells that resist eradication1. Clinical and experimental data suggest that the latter mode of control-termed cancer-immune equilibrium1-can be maintained for prolonged periods of time, possibly up to several decades2-4. Although cancers most frequently originate in epithelial layers, the nature and spatiotemporal dynamics of immune responses that maintain cancer-immune equilibrium in these tissue compartments remain unclear. Here, using a mouse model of transplantable cutaneous melanoma5, we show that tissue-resident memory CD8+ T cells (TRM cells) promote a durable melanoma-immune equilibrium that is confined to the epidermal layer of the skin. A proportion of mice (~40%) transplanted with melanoma cells remained free of macroscopic skin lesions long after epicutaneous inoculation, and generation of tumour-specific epidermal CD69+ CD103+ TRM cells correlated with this spontaneous disease control. By contrast, mice deficient in TRM formation were more susceptible to tumour development. Despite being tumour-free at the macroscopic level, mice frequently harboured melanoma cells in the epidermal layer of the skin long after inoculation, and intravital imaging revealed that these cells were dynamically surveyed by TRM cells. Consistent with their role in melanoma surveillance, tumour-specific TRM cells that were generated before melanoma inoculation conferred profound protection from tumour development independently of recirculating T cells. Finally, depletion of TRM cells triggered tumour outgrowth in a proportion (~20%) of mice with occult melanomas, demonstrating that TRM cells can actively suppress cancer progression. Our results show that TRM cells have a fundamental role in the surveillance of subclinical melanomas in the skin by maintaining cancer-immune equilibrium. As such, they provide strong impetus for exploring these cells as targets of future anticancer immunotherapies.