Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Org Biomol Chem ; 22(29): 5886-5890, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38804835

RESUMEN

Neutral rhodol-based red emitters are shown to efficiently localize in mitochondria, as demonstrated by confocal microscopy and co-localization studies. A simple model is proposed to explain the localization mechanism of neutral molecules. The model takes into account the strong coupling between the molecular dipole moment and the electric field of the inner mitochondrial membrane.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , Mitocondrias/metabolismo , Mitocondrias/química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Microscopía Confocal , Xantonas/química , Estructura Molecular , Células HeLa
2.
Angew Chem Int Ed Engl ; : e202405819, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994644

RESUMEN

Nucleic acid processing enzymes use a two-Mg2+-ion motif to promote the formation and cleavage of phosphodiester bonds. Yet, recent evidence demonstrates the presence of spatially conserved second-shell cations surrounding the catalytic architecture of proteinaceous and RNA-dependent enzymes. The RNase mitochondrial RNA processing (MRP) complex, which cleaves the ribosomal RNA (rRNA) precursor at the A3 cleavage site to yield mature 5'-end of 5.8S rRNA, hosts in the catalytic core one atypically-located Mg2+ ion, in addition to the ions forming the canonical catalytic motif. Here, we employ biased quantum classical molecular dynamics simulations of RNase MRP to discover that the third Mg2+ ion inhibits the catalytic process. Instead, its displacement in favour of a second-shell monovalent K+ ion propels phosphodiester bond cleavage by enabling the formation of a specific hydrogen bonding network that mediates the essential proton transfer step. This study points to a direct involvement of a transient K+ ion in the catalytic cleavage of the phosphodiester bond and implicates cation trafficking as a general mechanism in nucleic acid processing enzymes and ribozymes.

3.
Protein Sci ; 33(4): e4939, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38501467

RESUMEN

Rho-GTPases proteins function as molecular switches alternating from an active to an inactive state upon Guanosine triphosphate (GTP) binding and hydrolysis to Guanosine diphosphate (GDP). Among them, Rac subfamily regulates cell dynamics, being overexpressed in distinct cancer types. Notably, these proteins are object of frequent cancer-associated mutations at Pro29 (P29S, P29L, and P29Q). To assess the impact of these mutations on Rac1 structure and function, we performed extensive all-atom molecular dynamics simulations on wild-type (wt) and oncogenic isoforms of this protein in GDP- and GTP-bound states. Our results unprecedentedly elucidate that P29Q/S-induced structural and dynamical perturbations of Rac1 core domain weaken the binding of the catalytic site Mg2+ ion, and reduce the GDP residence time within protein, enhancing the GDP/GTP exchange rate and Rac1 activity. This broadens our knowledge of the role of cancer-associated mutations on small GTPases mechanism supplying valuable information for future drug discovery efforts targeting specific Rac1 isoforms.


Asunto(s)
Neoplasias , Proteínas de Unión al GTP rho , Humanos , Proteínas de Unión al GTP rho/química , Mutación , Neoplasias/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Isoformas de Proteínas/metabolismo
4.
Expert Opin Drug Discov ; : 1-21, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105536

RESUMEN

INTRODUCTION: Molecular Dynamics (MD) simulations can support mechanism-based drug design. Indeed, MD simulations by capturing biomolecule motions at finite temperatures can reveal hidden binding sites, accurately predict drug-binding poses, and estimate the thermodynamics and kinetics, crucial information for drug discovery campaigns. Small-Guanosine Triphosphate Phosphohydrolases (GTPases) regulate a cascade of signaling events, that affect most cellular processes. Their deregulation is linked to several diseases, making them appealing drug targets. The broad roles of small-GTPases in cellular processes and the recent approval of a covalent KRas inhibitor as an anticancer agent renewed the interest in targeting small-GTPase with small molecules. AREA COVERED: This review emphasizes the role of MD simulations in elucidating small-GTPase mechanisms, assessing the impact of cancer-related variants, and discovering novel inhibitors. EXPERT OPINION: The application of MD simulations to small-GTPases exemplifies the role of MD simulations in the structure-based drug design process for challenging biomolecular targets. Furthermore, AI and machine learning-enhanced MD simulations, coupled with the upcoming power of quantum computing, are promising instruments to target elusive small-GTPases mutations and splice variants. This powerful synergy will aid in developing innovative therapeutic strategies associated to small-GTPases deregulation, which could potentially be used for personalized therapies and in a tissue-agnostic manner to treat tumors with mutations in small-GTPases.

5.
J Phys Chem Lett ; 15(13): 3502-3508, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38517341

RESUMEN

RNA ATPases/helicases remodel substrate RNA-protein complexes in distinct ways. The different RNA ATPases/helicases, taking part in the spliceosome complex, reshape the RNA/RNA-protein contacts to enable premature-mRNA splicing. Among them, the bad response to refrigeration 2 (Brr2) helicase promotes U4/U6 small nuclear (sn)RNA unwinding via ATP-driven translocation of the U4 snRNA strand, thus playing a pivotal role during the activation, catalytic, and disassembly phases of splicing. The plastic Brr2 architecture consists of an enzymatically active N-terminal cassette (N-cassette) and a structurally similar but inactive C-terminal cassette (C-cassette). The C-cassette, along with other allosteric effectors and regulators, tightly and timely controls Brr2's function via an elusive mechanism. Here, microsecond-long molecular dynamics simulations, dynamical network theory, and community network analysis are combined to elucidate how allosteric effectors/regulators modulate the Brr2 function. We unexpectedly reveal that U4 snRNA itself acts as an allosteric regulator, amplifying the cross-talk of distal Brr2 domains and triggering a conformational reorganization of the protein. Our findings offer fundamental understanding into Brr2's mechanism of action and broaden our knowledge on the sophisticated regulatory mechanisms by which spliceosome ATPases/helicases control gene expression. This includes their allosteric regulation exerted by client RNA strands, a mechanism that may be broadly applicable to other RNA-dependent ATPases/helicases.


Asunto(s)
Ribonucleoproteínas Nucleares Pequeñas , Empalmosomas , Humanos , Adenosina Trifosfatasas/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , ARN/metabolismo , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
6.
J Chem Theory Comput ; 20(3): 993-1018, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38287883

RESUMEN

Non-coding RNAs (ncRNAs), generated from nonprotein coding DNA sequences, constitute 98-99% of the human genome. Non-coding RNAs encompass diverse functional classes, including microRNAs, small interfering RNAs, PIWI-interacting RNAs, small nuclear RNAs, small nucleolar RNAs, and long non-coding RNAs. With critical involvement in gene expression and regulation across various biological and physiopathological contexts, such as neuronal disorders, immune responses, cardiovascular diseases, and cancer, non-coding RNAs are emerging as disease biomarkers and therapeutic targets. In this review, after providing an overview of non-coding RNAs' role in cell homeostasis, we illustrate the potential and the challenges of state-of-the-art computational methods exploited to study non-coding RNAs biogenesis, function, and modulation. This can be done by directly targeting them with small molecules or by altering their expression by targeting the cellular engines underlying their biosynthesis. Drawing from applications, also taken from our work, we showcase the significance and role of computer simulations in uncovering fundamental facets of ncRNA mechanisms and modulation. This information may set the basis to advance gene modulation tools and therapeutic strategies to address unmet medical needs.


Asunto(s)
MicroARNs , Neoplasias , Humanos , ARN no Traducido/genética , MicroARNs/genética , ARN Interferente Pequeño
7.
J Phys Chem Lett ; 15(32): 8177-8186, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39093570

RESUMEN

Intrinsically disordered proteins and regions (IDP/IDRs) are ubiquitous across all domains of life. Characterized by a lack of a stable tertiary structure, IDP/IDRs populate a diverse set of transiently formed structural states that can promiscuously adapt upon binding with specific interaction partners and/or certain alterations in environmental conditions. This malleability is foundational for their role as tunable interaction hubs in core cellular processes such as signaling, transcription, and translation. Tracing the conformational ensemble of an IDP/IDR and its perturbation in response to regulatory cues is thus paramount for illuminating its function. However, the conformational heterogeneity of IDP/IDRs poses several challenges. Here, we review experimental and computational methods devised to disentangle the conformational landscape of IDP/IDRs, highlighting recent computational advances that permit proteome-wide scans of IDP/IDRs conformations. We briefly evaluate selected computational methods using the disordered N-terminal of the human copper transporter 1 as a test case and outline further challenges in IDP/IDRs ensemble prediction.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Aprendizaje Automático , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Humanos
8.
Nat Commun ; 14(1): 8482, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123540

RESUMEN

Cleavage and formation of phosphodiester bonds in nucleic acids is accomplished by large cellular machineries composed of both protein and RNA. Long thought to rely on a two-metal-ion mechanism for catalysis, structure comparisons revealed many contain highly spatially conserved second-shell monovalent cations, whose precise function remains elusive. A recent high-resolution structure of the spliceosome, essential for pre-mRNA splicing in eukaryotes, revealed a potassium ion in the active site. Here, we employ biased quantum mechanics/ molecular mechanics molecular dynamics to elucidate the function of this monovalent ion in splicing. We discover that the K+ ion regulates the kinetics and thermodynamics of the first splicing step by rigidifying the active site and stabilizing the substrate in the pre- and post-catalytic state via formation of key hydrogen bonds. Our work supports a direct role for the K+ ion during catalysis and provides a mechanistic hypothesis likely shared by other nucleic acid processing enzymes.


Asunto(s)
ARN , Empalmosomas , Empalmosomas/metabolismo , ARN/metabolismo , Empalme del ARN , Catálisis , Metales/metabolismo , Potasio/metabolismo , Quelantes/metabolismo , Conformación de Ácido Nucleico , Sitios de Unión , Cationes Monovalentes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA