Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Inform ; 134: 104176, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36007785

RESUMEN

OBJECTIVE: For multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information. MATERIALS AND METHODS: For each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population. The target population can be an entire cohort comprised of all centers, corresponding to federated learning, or a single center, corresponding to transfer learning. RESULTS: Simulation studies and a real-world international electronic health records application study, with 15 participating health care centers across three countries (France, Germany, and the U.S.), show that the proposed SurvMaximin algorithm achieves comparable or higher accuracy compared with the estimator using only the information of the target site and other existing methods. The SurvMaximin estimator is robust to variations in sample sizes and estimated feature coefficients between centers, which amounts to significantly improved estimates for target sites with fewer observations. CONCLUSIONS: The SurvMaximin method is well suited for both federated and transfer learning in the high-dimensional survival analysis setting. SurvMaximin only requires a one-time summary information exchange from participating centers. Estimated regression vectors can be very heterogeneous. SurvMaximin provides robust Cox feature coefficient estimates without outcome information in the target population and is privacy-preserving.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Humanos , Privacidad , Modelos de Riesgos Proporcionales , Análisis de Supervivencia
2.
EClinicalMedicine ; 64: 102212, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37745025

RESUMEN

Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras. Methods: We performed a multicentre observational retrospective study including seven paediatric hospitals in four countries (France, Spain, U.K., and U.S.). All consecutive confirmed patients with MIS-C hospitalised between February 1st, 2020, and May 31st, 2022, were included. Electronic Health Records (EHR) data were used to calculate pooled risk differences (RD) and effect sizes (ES) at site level, using Alpha as reference. Meta-analysis was used to pool data across sites. Findings: Of 598 patients with MIS-C (61% male, 39% female; mean age 9.7 years [SD 4.5]), 383 (64%) were admitted in the Alpha era, 111 (19%) in the Delta era, and 104 (17%) in the Omicron era. Compared with patients admitted in the Alpha era, those admitted in the Delta era were younger (ES -1.18 years [95% CI -2.05, -0.32]), had fewer respiratory symptoms (RD -0.15 [95% CI -0.33, -0.04]), less frequent non-cardiogenic shock or systemic inflammatory response syndrome (SIRS) (RD -0.35 [95% CI -0.64, -0.07]), lower lymphocyte count (ES -0.16 × 109/uL [95% CI -0.30, -0.01]), lower C-reactive protein (ES -28.5 mg/L [95% CI -46.3, -10.7]), and lower troponin (ES -0.14 ng/mL [95% CI -0.26, -0.03]). Patients admitted in the Omicron versus Alpha eras were younger (ES -1.6 years [95% CI -2.5, -0.8]), had less frequent SIRS (RD -0.18 [95% CI -0.30, -0.05]), lower lymphocyte count (ES -0.39 × 109/uL [95% CI -0.52, -0.25]), lower troponin (ES -0.16 ng/mL [95% CI -0.30, -0.01]) and less frequently received anticoagulation therapy (RD -0.19 [95% CI -0.37, -0.04]). Length of hospitalization was shorter in the Delta versus Alpha eras (-1.3 days [95% CI -2.3, -0.4]). Interpretation: Our study suggested that MIS-C clinical phenotypes varied across SARS-CoV-2 eras, with patients in Delta and Omicron eras being younger and less sick. EHR data can be effectively leveraged to identify rare complications of pandemic diseases and their variation over time. Funding: None.

3.
EClinicalMedicine ; 55: 101724, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36381999

RESUMEN

Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking. Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1-365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021. Findings: Advanced age (HR 2.77, 95%CI 2.53-3.04, p < 0.0001), severe COVID-19 (HR 2.91, 95%CI 2.03-4.17, p < 0.0001), severe AKI (KDIGO stage 3: HR 4.22, 95%CI 3.55-5.00, p < 0.0001), and ischemic heart disease (HR 1.26, 95%CI 1.14-1.39, p < 0.0001) were associated with worse mortality outcomes. AKI severity (KDIGO stage 3: HR 0.41, 95%CI 0.37-0.46, p < 0.0001) was associated with worse kidney function recovery, whereas remdesivir use (HR 1.34, 95%CI 1.17-1.54, p < 0.0001) was associated with better kidney function recovery. In a subset of patients without chronic kidney disease, advanced age (HR 1.38, 95%CI 1.20-1.58, p < 0.0001), male sex (HR 1.67, 95%CI 1.45-1.93, p < 0.0001), severe AKI (KDIGO stage 3: HR 11.68, 95%CI 9.80-13.91, p < 0.0001), and hypertension (HR 1.22, 95%CI 1.10-1.36, p = 0.0002) were associated with post-AKI kidney function impairment. Furthermore, patients with COVID-19-associated AKI had significant and persistent elevations of baseline serum creatinine 125% or more at 180 days (RR 1.49, 95%CI 1.32-1.67) and 365 days (RR 1.54, 95%CI 1.21-1.96) compared to COVID-19 patients with no AKI. Interpretation: COVID-19-associated AKI was associated with higher mortality, and severe COVID-19-associated AKI was associated with worse long-term post-AKI kidney function recovery. Funding: Authors are supported by various funders, with full details stated in the acknowledgement section.

4.
NPJ Digit Med ; 5(1): 81, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768548

RESUMEN

The risk profiles of post-acute sequelae of COVID-19 (PASC) have not been well characterized in multi-national settings with appropriate controls. We leveraged electronic health record (EHR) data from 277 international hospitals representing 414,602 patients with COVID-19, 2.3 million control patients without COVID-19 in the inpatient and outpatient settings, and over 221 million diagnosis codes to systematically identify new-onset conditions enriched among patients with COVID-19 during the post-acute period. Compared to inpatient controls, inpatient COVID-19 cases were at significant risk for angina pectoris (RR 1.30, 95% CI 1.09-1.55), heart failure (RR 1.22, 95% CI 1.10-1.35), cognitive dysfunctions (RR 1.18, 95% CI 1.07-1.31), and fatigue (RR 1.18, 95% CI 1.07-1.30). Relative to outpatient controls, outpatient COVID-19 cases were at risk for pulmonary embolism (RR 2.10, 95% CI 1.58-2.76), venous embolism (RR 1.34, 95% CI 1.17-1.54), atrial fibrillation (RR 1.30, 95% CI 1.13-1.50), type 2 diabetes (RR 1.26, 95% CI 1.16-1.36) and vitamin D deficiency (RR 1.19, 95% CI 1.09-1.30). Outpatient COVID-19 cases were also at risk for loss of smell and taste (RR 2.42, 95% CI 1.90-3.06), inflammatory neuropathy (RR 1.66, 95% CI 1.21-2.27), and cognitive dysfunction (RR 1.18, 95% CI 1.04-1.33). The incidence of post-acute cardiovascular and pulmonary conditions decreased across time among inpatient cases while the incidence of cardiovascular, digestive, and metabolic conditions increased among outpatient cases. Our study, based on a federated international network, systematically identified robust conditions associated with PASC compared to control groups, underscoring the multifaceted cardiovascular and neurological phenotype profiles of PASC.

5.
NPJ Digit Med ; 5(1): 74, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697747

RESUMEN

Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA