Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Calcif Tissue Int ; 108(2): 265-276, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33068139

RESUMEN

ALDH2 inactivating mutation (ALDH2*2) is the most abundant mutation leading to bone morphological aberration. Osteoporosis has long been associated with changes in bone biomaterial in elderly populations. Such changes can be exacerbated with elevated ethanol consumption and in subjects with impaired ethanol metabolism, such as carriers of aldehyde dehydrogenase 2 (ALDH2)-deficient gene, ALDH2*2. So far, little is known about bone compositional changes besides a decrease in mineralization. Raman spectroscopic imaging has been utilized to study the changes in overall composition of C57BL/6 female femur bone sections, as well as in compound spatial distribution. Raman maps of bone sections were analyzed using multilinear regression with these four isolated components, resulting in maps of their relative distribution. A 15-week treatment of both wild-type (WT) and ALDH2*2/*2 mice with 20% ethanol in the drinking water resulted in a significantly lower mineral content (p < 0.05) in the bones. There was no significant change in mineral and collagen content due to the mutation alone (p > 0.4). Highly localized islets of elongated adipose tissue were observed on most maps. Elevated fat content was found in ALDH2*2 knock-in mice consuming ethanol (p < 0.0001) and this effect appeared cumulative. This work conclusively demonstrates that that osteocytes in femurs of older female mice accumulate fat, as has been previously theorized, and that fat accumulation is likely modulated by levels of acetaldehyde, the ethanol metabolite.


Asunto(s)
Consumo de Bebidas Alcohólicas/efectos adversos , Aldehído Deshidrogenasa Mitocondrial/genética , Hueso Cortical , Etanol , Fémur , Acetaldehído , Animales , Etanol/administración & dosificación , Femenino , Ratones , Ratones Endogámicos C57BL
2.
J Biol Chem ; 294(19): 7864-7877, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30914479

RESUMEN

4-Methylumbelliferone (4-MU) inhibits hyaluronan (HA) synthesis and is an approved drug used for managing biliary spasm. However, rapid and efficient glucuronidation is thought to limit its utility for systemically inhibiting HA synthesis. In particular, 4-MU in mice has a short half-life, causing most of the drug to be present as the metabolite 4-methylumbelliferyl glucuronide (4-MUG), which makes it remarkable that 4-MU is effective at all. We report here that 4-MUG contributes to HA synthesis inhibition. We observed that oral administration of 4-MUG to mice inhibits HA synthesis, promotes FoxP3+ regulatory T-cell expansion, and prevents autoimmune diabetes. Mice fed either 4-MUG or 4-MU had equivalent 4-MU:4-MUG ratios in serum, liver, and pancreas, indicating that 4-MU and 4-MUG reach an equilibrium in these tissues. LC-tandem MS experiments revealed that 4-MUG is hydrolyzed to 4-MU in serum, thereby greatly increasing the effective bioavailability of 4-MU. Moreover, using intravital 2-photon microscopy, we found that 4-MUG (a nonfluorescent molecule) undergoes conversion into 4-MU (a fluorescent molecule) and that 4-MU is extensively tissue bound in the liver, fat, muscle, and pancreas of treated mice. 4-MUG also suppressed HA synthesis independently of its conversion into 4-MU and without depletion of the HA precursor UDP-glucuronic acid (GlcUA). Together, these results indicate that 4-MUG both directly and indirectly inhibits HA synthesis and that the effective bioavailability of 4-MU is higher than previously thought. These findings greatly alter the experimental and therapeutic possibilities for HA synthesis inhibition.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ácido Hialurónico/biosíntesis , Himecromona/análogos & derivados , Linfocitos T Reguladores/metabolismo , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/patología , Himecromona/farmacología , Ratones , Linfocitos T Reguladores/patología
3.
Biol Chem ; 402(1): 113-121, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33544492

RESUMEN

We developed a new approach for combined analysis of calcium (Ca2+) handling and beating forces in contractile cardiomyocytes. We employed human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from dilated cardiomyopathy (DCM) patients carrying an inherited mutation in the sarcomeric protein troponin T (TnT), and isogenic TnT-KO iPSC-CMs generated via CRISPR/Cas9 gene editing. In these cells, Ca2+ handling as well as beating forces and -rates using single-cell atomic force microscopy (AFM) were assessed. We report impaired Ca2+ handling and reduced contractile force in DCM iPSC-CMs compared to healthy WT controls. TnT-KO iPSC-CMs display no contractile force or Ca2+ transients but generate Ca2+ sparks. We apply our analysis strategy to Ca2+ traces and AFM deflection recordings to reveal maximum rising rate, decay time, and duration of contraction with a multi-step background correction. Our method provides adaptive computing of signal peaks for different Ca2+ flux or force levels in iPSC-CMs, as well as analysis of Ca2+ sparks. Moreover, we report long-term measurements of contractile force dynamics on human iPSC-CMs. This approach enables deeper and more accurate profiling of disease-specific differences in cardiomyocyte contraction profiles using patient-derived iPSC-CMs.


Asunto(s)
Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Calcio/análisis , Humanos , Células Madre Pluripotentes Inducidas/patología , Microscopía de Fuerza Atómica , Miocitos Cardíacos/patología
4.
Anal Chem ; 91(12): 7929-7934, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31117414

RESUMEN

Improved methods are needed to reliably assess Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) function in vivo in light of recent therapeutic developments targeting the CFTR protein. Oral fluid from patients with cystic fibrosis (CF) and healthy controls (HCs) were studied using colorimetry and nonresonant Raman spectroscopy. Colorimetry experiments showed only a 36% decrease in thiocyanate (SCN-) concentration, but a sharp Raman peak at 2068 cm-1, attributable to (SCN-) vibrations, normalized to C-H peak, was on average 18 times higher for HC samples. Samples from patients undergoing treatment with CFTR modulators including ivacaftor, lumacaftor, and tezacaftor showed a high normalized peak in response to therapy. The peak intensity was consistent in longitudinal samples from single donors and in stored samples. The Raman peak ratio is a more sensitive, convenient, noninvasive biomarker for assessments of the therapeutic efficacy of drugs targeting CFTR and provides a value that is in much better agreement with theoretical expectations of saliva SCN- concentrations compared to colorimetry. This insight may greatly facilitate assessments of CFTR modulator efficacy in individual patients.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Saliva/metabolismo , Tiocianatos/metabolismo , Biomarcadores/metabolismo , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Espectrometría Raman
5.
Mol Psychiatry ; 23(12): 2302-2313, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30254235

RESUMEN

Chronic pain poses a heavy burden for the individual and society, comprising personal suffering, comorbid psychiatric symptoms, cognitive decline, and disability. Treatment options are poor due in large part to pain centralization, where an initial injury can result in lasting CNS maladaptations. Hippocampal cellular plasticity in chronic pain has become a focus of study due to its roles in cognition, memory, and the experience of pain itself. However, the extracellular alterations that parallel and facilitate changes in hippocampal function have not been addressed to date. Here we show structural and biochemical plasticity in the hippocampal extracellular matrix (ECM) that is linked to behavioral, cellular, and synaptic changes in a mouse model of chronic pain. Specifically, we report deficits in working location memory that are associated with decreased hippocampal dendritic complexity, altered ECM microarchitecture, decreased ECM rigidity, and changes in the levels of key ECM components and enzymes, including increased levels of MMP8. We also report aberrations in long-term potentiation (LTP) and a loss of inhibitory interneuron perineuronal ECM nets, potentially accounting for the aberrations in LTP. Finally, we demonstrate that MMP8 is upregulated after injury and that its genetic downregulation normalizes the behavioral, electrophysiological, and extracellular alterations. By linking specific extracellular changes to the chronic pain phenotype, we provide a novel mechanistic understanding of pain centralization that provides new targets for the treatment of chronic pain.


Asunto(s)
Hipocampo/metabolismo , Memoria a Corto Plazo/fisiología , Dolor/metabolismo , Animales , Plasticidad de la Célula/fisiología , Cognición , Disfunción Cognitiva/fisiopatología , Matriz Extracelular/metabolismo , Interneuronas , Potenciación a Largo Plazo/fisiología , Masculino , Metaloproteinasa 8 de la Matriz/metabolismo , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Plasticidad Neuronal/fisiología , Lóbulo Temporal
6.
Analyst ; 144(22): 6721-6728, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31612878

RESUMEN

The tympanic membrane (TM) is a dynamic structure that separates the middle ear from the external auditory canal. It is also integral for the transmission of sound waves. In this study, we demonstrate the feasibility of using Raman spectroscopy to identify early chemical changes resulting from inflammation in the TM that can serve as an indicator of acute otitis media. Bacterial lipopolysaccharide (LPS) was injected trans-tympanicaly in a murine model. Presence of inflammatory response was assessed with binocular microscopy, confirmed with histopathology and immunofluorescence staining. Successful discrimination suggesting spectral differences among the control and LPS treated groups was achieved using principal component analysis. Raman imaging revealed major differences in collagen distribution and nucleic acid content. Image segmentation analysis on the trichrome stained tissue sections was performed to corroborate the Raman spectra. The spectral co-localization study suggests changes in the expression of collagen IV specific signals in LPS treated samples. The overall findings of the study support prospective application of RS in the diagnosis and therapeutic monitoring of otitis media.


Asunto(s)
Otitis Media/diagnóstico , Membrana Timpánica/metabolismo , Animales , Femenino , Inflamación/inducido químicamente , Inflamación/diagnóstico , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Otitis Media/inducido químicamente , Prueba de Estudio Conceptual , Espectrometría Raman/métodos
7.
Proc Natl Acad Sci U S A ; 112(1): 94-9, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535360

RESUMEN

There is a high mortality in patients with diabetes and severe pressure ulcers. For example, chronic pressure sores of the heels often lead to limb loss in diabetic patients. A major factor underlying this is reduced neovascularization caused by impaired activity of the transcription factor hypoxia inducible factor-1 alpha (HIF-1α). In diabetes, HIF-1α function is compromised by a high glucose-induced and reactive oxygen species-mediated modification of its coactivator p300, leading to impaired HIF-1α transactivation. We examined whether local enhancement of HIF-1α activity would improve diabetic wound healing and minimize the severity of diabetic ulcers. To improve HIF-1α activity we designed a transdermal drug delivery system (TDDS) containing the FDA-approved small molecule deferoxamine (DFO), an iron chelator that increases HIF-1α transactivation in diabetes by preventing iron-catalyzed reactive oxygen stress. Applying this TDDS to a pressure-induced ulcer model in diabetic mice, we found that transdermal delivery of DFO significantly improved wound healing. Unexpectedly, prophylactic application of this transdermal delivery system also prevented diabetic ulcer formation. DFO-treated wounds demonstrated increased collagen density, improved neovascularization, and reduction of free radical formation, leading to decreased cell death. These findings suggest that transdermal delivery of DFO provides a targeted means to both prevent ulcer formation and accelerate diabetic wound healing with the potential for rapid clinical translation.


Asunto(s)
Deferoxamina/uso terapéutico , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus Experimental/tratamiento farmacológico , Presión/efectos adversos , Úlcera/tratamiento farmacológico , Administración Cutánea , Animales , Apoptosis/efectos de los fármacos , Deferoxamina/administración & dosificación , Deferoxamina/farmacología , Dermis/irrigación sanguínea , Dermis/efectos de los fármacos , Dermis/patología , Complicaciones de la Diabetes/patología , Diabetes Mellitus Experimental/patología , Sistemas de Liberación de Medicamentos , Ratones Endogámicos C57BL , Necrosis , Neovascularización Fisiológica/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Úlcera/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas/efectos de los fármacos
8.
Gastroenterology ; 149(1): 52-55.e2, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25863215

RESUMEN

Systemic therapies for inflammatory bowel disease are associated with an increased risk of infections and malignancies. Topical therapies reduce systemic exposure, but can be difficult to retain or have limited proximal distribution. To mitigate these issues, we developed a thermo-sensitive platform, using a polymer-based system that is liquid at room temperature but turns into a viscous gel on reaching body temperature. After rectal administration to mice with dextran sulfate sodium-induced colitis, the platform carrying budesonide or mesalamine becomes more viscoelastic near body temperature. Mice given the drug-containing platform gained more weight and had reduced histologic and biologic features of colitis than mice given the platform alone or liquid drugs via enema. Image analysis showed that enemas delivered with and without the platform reached similar distances in the colons of mice, but greater colonic retention was achieved by using the platform.


Asunto(s)
Administración Tópica , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos/métodos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Administración Rectal , Animales , Sulfato de Dextran/toxicidad , Femenino , Enfermedades Inflamatorias del Intestino/inducido químicamente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos
9.
Microbiology (Reading) ; 162(9): 1583-1594, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27473221

RESUMEN

Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) are major human pathogens known to interact in a variety of disease settings, including airway infections in cystic fibrosis. We recently reported that clinical CF isolates of Pa inhibit the formation and growth of Af biofilms. Here, we report that the bacteriophage Pf4, produced by Pa, can inhibit the metabolic activity of Af biofilms. This phage-mediated inhibition was dose dependent, ablated by phage denaturation, and was more pronounced against preformed Af biofilm rather than biofilm formation. In contrast, planktonic conidial growth was unaffected. Two other phages, Pf1 and fd, did not inhibit Af, nor did supernatant from a Pa strain incapable of producing Pf4. Pf4, but not Pf1, attaches to Af hyphae in an avid and prolonged manner, suggesting that Pf4-mediated inhibition of Af may occur at the biofilm surface. We show that Pf4 binds iron, thus denying Af a crucial resource. Consistent with this, the inhibition of Af metabolism by Pf4 could be overcome with supplemental ferric iron, with preformed biofilm more resistant to reversal. To our knowledge, this is the first report of a bacterium producing a phage that inhibits the growth of a fungus and the first description of a phage behaving as an iron chelator in a biological system.


Asunto(s)
Aspergillus fumigatus/fisiología , Bacteriófagos/fisiología , Hierro/metabolismo , Pseudomonas aeruginosa/virología , Aspergilosis/microbiología , Aspergillus fumigatus/virología , Biopelículas , Humanos
10.
Adv Funct Mater ; 25(28): 4379-4389, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27516731

RESUMEN

Biomaterials are extensively used to restore damaged tissues, in the forms of implants (e.g. tissue engineered scaffolds) or biomedical devices (e.g. pacemakers). Once in contact with the physiological environment, nanostructured biomaterials undergo modifications as a result of endogenous proteins binding to their surface. The formation of this macromolecular coating complex, known as 'protein corona', onto the surface of nanoparticles and its effect on cell-particle interactions are currently under intense investigation. In striking contrast, protein corona constructs within nanostructured porous tissue engineering scaffolds remain poorly characterized. As organismal systems are highly dynamic, it is conceivable that the formation of distinct protein corona on implanted scaffolds might itself modulate cell-extracellular matrix interactions. Here, we report that corona complexes formed onto the fibrils of engineered collagen scaffolds display specific, distinct, and reproducible compositions that are a signature of the tissue microenvironment as well as being indicative of the subject's health condition. Protein corona formed on collagen matrices modulated cellular secretome in a context-specific manner ex-vivo, demonstrating their role in regulating scaffold-cellular interactions. Together, these findings underscore the importance of custom-designing personalized nanostructured biomaterials, according to the biological milieu and disease state. We propose the use of protein corona as in situ biosensor of temporal and local biomarkers.

11.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585955

RESUMEN

Dynamic changes in intracellular ultrastructure can be critical for the ability of organisms to acclimate to environmental conditions. Microalgae, which are responsible for ~50% of global photosynthesis, compartmentalize their Rubisco into a specialized structure known as the pyrenoid when the cells experience limiting CO2 conditions; this compartmentalization appears to be a component of the CO2 Concentrating Mechanism (CCM), which facilitates photosynthetic CO2 fixation as environmental levels of inorganic carbon (Ci) decline. Changes in the spatial distribution of mitochondria in green algae have also been observed under CO2 limiting conditions, although a role for this reorganization in CCM function remains unclear. We used the green microalgae Chlamydomonas reinhardtii to monitor changes in the position and ultrastructure of mitochondrial membranes as cells transition between high CO2 (HC) and Low/Very Low CO2 (LC/VLC). Upon transferring cells to VLC, the mitochondria move from a central to a peripheral location, become wedged between the plasma membrane and chloroplast envelope, and mitochondrial membranes orient in parallel tubular arrays that extend from the cell's apex to its base. We show that these ultrastructural changes require protein and RNA synthesis, occur within 90 min of shifting cells to VLC conditions, correlate with CCM induction and are regulated by the CCM master regulator CIA5. The apico-basal orientation of the mitochondrial membrane, but not the movement of the mitochondrion to the cell periphery, is dependent on microtubules and the MIRO1 protein, which is involved in membrane-microtubule interactions. Furthermore, blocking mitochondrial electron transport in VLC acclimated cells reduces the cell's affinity for inorganic carbon. Overall, our results suggest that CIA5-dependent mitochondrial repositioning/reorientation functions in integrating cellular architecture and energetics with CCM activities and invite further exploration of how intracellular architecture can impact fitness under dynamic environmental conditions.

12.
J Biol Chem ; 287(43): 36423-34, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22955287

RESUMEN

To determine whether the therapeutic activity of αB crystallin, small heat shock protein B5 (HspB5), was shared with other human sHsps, a set of seven human family members, a mutant of HspB5 G120 known to exhibit reduced chaperone activity, and a mycobacterial sHsp were expressed and purified from bacteria. Each of the recombinant proteins was shown to be a functional chaperone, capable of inhibiting aggregation of denatured insulin with varying efficiency. When injected into mice at the peak of disease, they were all effective in reducing the paralysis in experimental autoimmune encephalomyelitis. Additional structure activity correlations between chaperone activity and therapeutic function were established when linear regions within HspB5 were examined. A single region, corresponding to residues 73-92 of HspB5, forms amyloid fibrils, exhibited chaperone activity, and was an effective therapeutic for encephalomyelitis. The linkage of the three activities was further established by demonstrating individual substitutions of critical hydrophobic amino acids in the peptide resulted in the loss of all of the functions.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Parálisis/prevención & control , Cadena B de alfa-Cristalina/farmacología , Sustitución de Aminoácidos , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Humanos , Ratones , Mutación Missense , Parálisis/genética , Parálisis/metabolismo , Parálisis/patología , Cadena B de alfa-Cristalina/genética
13.
Sci Rep ; 12(1): 13549, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941350

RESUMEN

CLARITY is a tissue preservation and optical clearing technique whereby a hydrogel is formed directly within the architectural confines of ex vivo brain tissue. In this work, the extent of polymer gel formation and crosslinking within tissue was assessed using Raman spectroscopy and rheology on CLARITY samples prepared with a range of acrylamide monomer (AAm) concentrations (1%, 4%, 8%, 12% w/v). Raman spectroscopy of individual neurons within hybrids revealed the chemical presence and distribution of polyacrylamide within the mouse hippocampus. Consistent with rheological measurements, lower %AAm concentration decreased shear elastic modulus G', providing a practical correlation with sample permeability and protein retention. Permeability of F(ab)'2 secondary fluorescent antibody changes from 9.3 to 1.4 µm2 s-1 going from 1 to 12%. Notably, protein retention increased linearly relative to standard PFA-fixed tissue from 96.6% when AAm concentration exceeded 1%, with 12% AAm samples retaining up to ~ 99.3% native protein. This suggests that though 1% AAm offers high permeability, additional %AAm may be required to enhance protein. Our quantitative results on polymer distribution, stability, protein retention, and macromolecule permeability can be used to guide the design of future CLARITY-based tissue-clearing solutions, and establish protocols for characterization of novel tissue-polymer hybrid biomaterials using chemical spectroscopy and rheology.


Asunto(s)
Hidrogeles , Polímeros , Acrilamida , Animales , Materiales Biocompatibles , Encéfalo , Hidrogeles/química , Ratones , Reología
14.
Org Biomol Chem ; 9(8): 2878-84, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21373660

RESUMEN

A novel fluorescent system has been assembled by using ATP, surfactant, and a squaraine dye in an aqueous buffer solution. In the system, a cationic surfactant such as cetyl trimethyl ammonium bromide (CTAB) forms a sphere-like micelle, whose positive charge at the surface of the micelle attracts the negatively charged ATP to form a unique organized nanostructure. Such an organized system is shown to interact with the squaraine dye (SQ) to perturb its aggregate structure, thereby generating the optical response. The nanostructure of the assembly has been characterized by dynamic light-scattering (DLS) and atomic force microscopy (AFM). The unique feature of the developed sensing system is that the analytes ATP form part of the assembly structure. The system utilizes forces such as electrostatic interaction and π-π stacking of the aromatic segment of ATP and SQ to achieve the selective detection of ATP.


Asunto(s)
Compuestos de Cetrimonio/química , Ciclobutanos/química , Colorantes Fluorescentes/química , Nucleótidos/química , Fenoles/química , Tensoactivos/química , Cationes/química , Cetrimonio , Micelas , Microscopía de Fuerza Atómica , Estructura Molecular
15.
ACS Nano ; 15(12): 19956-19969, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34797988

RESUMEN

In vivo multiplexed imaging aims for noninvasive monitoring of tumors with multiple channels without excision of the tissue. While most of the preclinical imaging has provided a number of multiplexing channels up to three, Raman imaging with surface-enhanced Raman scattering (SERS) nanoparticles was suggested to offer higher multiplexing capability originating from their narrow spectral width. However, in vivo multiplexed SERS imaging is still in its infancy for multichannel visualization of tumors, which require both sufficient multiplicity and high sensitivity concurrently. Here we create multispectral palettes of gold multicore-near-infrared (NIR) resonant Raman dyes-silica shell SERS (NIR-SERRS) nanoparticle oligomers and demonstrate noninvasive and five-plex SERS imaging of the nanoparticle accumulation in tumors of living mice. We perform the five-plex ratiometric imaging of tumors by varying the administered ratio of the nanoparticles, which simulates the detection of multiple biomarkers with different expression levels in the tumor environment. Furthermore, since this method does not require the excision of tumor tissues at the imaging condition, we perform noninvasive and longitudinal imaging of the five-color nanoparticles in the tumors, which is not feasible with current ex vivo multiplexed tissue analysis platforms. Our work surpasses the multiplicity limit of previous preclinical tumor imaging methods while keeping enough sensitivity for tumor-targeted in vivo imaging and could enable the noninvasive assessment of multiple biological targets within the tumor microenvironment in living subjects.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Animales , Diagnóstico por Imagen , Oro , Ratones , Neoplasias/diagnóstico por imagen , Espectrometría Raman , Microambiente Tumoral
16.
Sci Adv ; 7(37): eabg4298, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34516872

RESUMEN

Glutamate has dual roles in metabolism and signaling; thus, signaling functions must be isolatable and distinct from metabolic fluctuations, as seen in low-glutamate domains at synapses. In plants, wounding triggers electrical and calcium (Ca2+) signaling, which involve homologs of mammalian glutamate receptors. The hydraulic dispersal and squeeze-cell hypotheses implicate pressure as a key component of systemic signaling. Here, we identify the stretch-activated anion channel MSL10 as necessary for proper wound-induced electrical and Ca2+ signaling. Wound gene induction, genetics, and Ca2+ imaging indicate that MSL10 acts in the same pathway as the glutamate receptor­like proteins (GLRs). Analogous to mammalian NMDA glutamate receptors, GLRs may serve as coincidence detectors gated by the combined requirement for ligand binding and membrane depolarization, here mediated by stretch activation of MSL10. This study provides a molecular genetic basis for a role of mechanical signal perception and the transmission of long-distance electrical and Ca2+ signals in plants.

17.
Matrix Biol ; 96: 69-86, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33290836

RESUMEN

A coat of pericellular hyaluronan surrounds mature dendritic cells (DC) and contributes to cell-cell interactions. We asked whether 4-methylumbelliferone (4MU), an oral inhibitor of HA synthesis, could inhibit antigen presentation. We find that 4MU treatment reduces pericellular hyaluronan, destabilizes interactions between DC and T-cells, and prevents T-cell proliferation in vitro and in vivo. These effects were observed only when 4MU was added prior to initial antigen presentation but not later, consistent with 4MU-mediated inhibition of de novo antigenic responses. Building on these findings, we find that 4MU delays rejection of allogeneic pancreatic islet transplant and allogeneic cardiac transplants in mice and suppresses allogeneic T-cell activation in human mixed lymphocyte reactions. We conclude that 4MU, an approved drug, may have benefit as an adjunctive agent to delay transplantation rejection.


Asunto(s)
Células Dendríticas/citología , Rechazo de Injerto/prevención & control , Ácido Hialurónico/biosíntesis , Himecromona/administración & dosificación , Linfocitos T Reguladores/citología , Animales , Presentación de Antígeno/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Rechazo de Injerto/inmunología , Trasplante de Corazón/efectos adversos , Humanos , Himecromona/farmacología , Leucocitos/citología , Leucocitos/efectos de los fármacos , Leucocitos/inmunología , Ratones , Trasplante de Páncreas/efectos adversos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Trasplante Homólogo
18.
Elife ; 102021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34491200

RESUMEN

With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.


Asunto(s)
Células Vegetales , Agricultura , Chlamydomonas reinhardtii , Cloroplastos , Biología Computacional , Procesamiento de Imagen Asistido por Computador , Células Vegetales/fisiología , Desarrollo de la Planta , Plantas/clasificación , Plantas/genética , Zea mays
19.
J Org Chem ; 75(14): 4860-3, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20557074

RESUMEN

Upon heating in a dry atmosphere, benzenehexasulfonic acid forms three cyclic anhydrides. Mono- and dianhydride do not hydrolyze readily due their flatter structures compared to the hydrolysis products. The trianhydride appears more to be reactive toward hydrolysis. In solutions, the mono- and dianhydride undergo ring-shift tautomerization, which is in the latter case shifted toward the para isomer.

20.
Adv Sci (Weinh) ; 7(8): 1902573, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32328414

RESUMEN

Extracellular matrix (ECM) properties affect multiple cellular processes such as cell survival, proliferation, and protein synthesis. Thus, a polymeric-cell delivery system with the ability to manipulate the extracellular environment can act as a fundamental regulator of cell function. Given the promise of stem cell therapeutics, a method to uniformly enhance stem cell function, in particular trophic factor release, can prove transformative in improving efficacy and increasing feasibility by reducing the total number of cells required. Herein, a click-chemistry powered 3D, single-cell encapsulation method aimed at synthesizing a polymeric coating with the optimal thickness around neural progenitor cells is introduced. Polymer encapsulation of neural stem cells significantly increases the release of neurotrophic factors such as VEGF and CNTF. Cell encapsulation with a soft extracellular polymer upregulates the ADCY8-cAMP pathway, suggesting a mechanism for the increase in paracrine factors. Hence, the described single-cell encapsulation technique can emerge as a translatable, nonviral cell modulation method and has the potential to improve stem cells' therapeutic effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA