RESUMEN
A critical challenge for the successful development of RNA interference-based therapeutics therapeutics has been the enhancement of their in vivo metabolic stability. In therapeutically relevant, fully chemically modified small interfering RNAs (siRNAs), modification of the two terminal phosphodiester linkages in each strand of the siRNA duplex with phosphorothioate (PS) is generally sufficient to protect against exonuclease degradation in vivo. Since PS linkages are chiral, we systematically studied the properties of siRNAs containing single chiral PS linkages at each strand terminus. We report an efficient and simple method to introduce chiral PS linkages and demonstrate that Rp diastereomers at the 5' end and Sp diastereomers at the 3' end of the antisense siRNA strand improved pharmacokinetic and pharmacodynamic properties in a mouse model. In silico modeling studies provide mechanistic insights into how the Rp isomer at the 5' end and Sp isomer at the 3' end of the antisense siRNA enhance Argonaute 2 (Ago2) loading and metabolic stability of siRNAs in a concerted manner.
Asunto(s)
Organofosfatos , ARN Interferente Pequeño , Animales , Isomerismo , Ratones , Interferencia de ARN , Estabilidad del ARN , ARN Bicatenario , ARN Interferente Pequeño/metabolismoRESUMEN
Chemical modifications are necessary to ensure the metabolic stability and efficacy of oligonucleotide-based therapeutics. Here, we describe analyses of the α-(l)-threofuranosyl nucleic acid (TNA) modification, which has a shorter 3'-2' internucleotide linkage than the natural DNA and RNA, in the context of small interfering RNAs (siRNAs). The TNA modification enhanced nuclease resistance more than 2'-O-methyl or 2'-fluoro ribose modifications. TNA-containing siRNAs were prepared as triantennary N-acetylgalactosamine conjugates and were tested in cultured cells and mice. With the exceptions of position 2 of the antisense strand and position 11 of the sense strand, the TNA modification did not inhibit the activity of the RNA interference machinery. In a rat toxicology study, TNA placed at position 7 of the antisense strand of the siRNA mitigated off-target effects, likely due to the decrease in the thermodynamic binding affinity relative to the 2'-O-methyl residue. Analysis of the crystal structure of an RNA octamer with a single TNA on each strand showed that the tetrose sugar adopts a C4'-exo pucker. Computational models of siRNA antisense strands containing TNA bound to Argonaute 2 suggest that TNA is well accommodated in the region kinked by the enzyme. The combined data indicate that the TNA nucleotides are promising modifications expected to increase the potency, duration of action, and safety of siRNAs.
Asunto(s)
Ácidos Nucleicos , Animales , Ratones , Ratas , ARN Interferente Pequeño , Nucleótidos , Interferencia de ARN , AcetilgalactosaminaRESUMEN
We designed novel 4'-modified 2'-deoxy-2'-fluorouridine (2'-F U) analogues with the aim to improve nuclease resistance and potency of therapeutic siRNAs by introducing 4'-C-methoxy (4'-OMe) as the alpha (C4'α) or beta (C4'ß) epimers. The C4'α epimer was synthesized by a stereoselective route in six steps; however, both α and ß epimers could be obtained by a nonstereoselective approach starting from 2'-F U. 1H NMR analysis and computational investigation of the α-epimer revealed that the 4'-OMe imparts a conformational bias toward the North-East sugar pucker, due to intramolecular hydrogen bonding and hyperconjugation effects. The α-epimer generally conceded similar thermal stability as unmodified nucleotides, whereas the ß-epimer led to significant destabilization. Both 4'-OMe epimers conferred increased nuclease resistance, which can be explained by the close proximity between 4'-OMe substituent and the vicinal 5'- and 3'-phosphate group, as seen in the X-ray crystal structure of modified RNA. siRNAs containing several C4'α-epimer monomers in the sense or antisense strands triggered RNAi-mediated gene silencing with efficiencies comparable to that of 2'-F U.
Asunto(s)
Silenciador del Gen , Interferencia de ARN , Estabilidad del ARN , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Ribonucleótidos/química , Ribonucleótidos/metabolismo , Desnaturalización de Ácido Nucleico , Compuestos Organofosforados/síntesis química , Compuestos Organofosforados/química , ARN Interferente Pequeño/genética , Tratamiento con ARN de Interferencia , Ribonucleótidos/genética , Termodinámica , Uridina/química , Uridina/metabolismoRESUMEN
Although judicious use of chemical modifications has contributed to the success of nucleic acid therapeutics, poor systemic stability remains a major hurdle. The introduction of functional groups around the phosphate backbone can enhance the nuclease resistance of oligonucleotides (ONs). Here, we report the synthesis of enantiomerically pure (R)- and (S)-5'-C-methyl (C5'-Me) substituted nucleosides and their incorporation into ONs. These modifications generally resulted in a decrease in thermal stability of oligonucleotide (ON) duplexes in a manner dependent on the stereoconfiguration at C5' with greater destabilization characteristic of (R)-epimers. Enhanced stability against snake venom phosphodiesterase resulted from modification of the 3'-end of an ON with either (R)- or (S)-C5'-Me nucleotides. The (S)-isomers with different 2'-substituents provided greater resistance against 3'-exonucleases than the corresponding (R)-isomers. Crystal structure analyses of RNA octamers with (R)- or (S)-5'-C-methyl-2'-deoxy-2'-fluorouridine [(R)- or (S)-C5'-Me-2'-FU, respectively] revealed that the stereochemical orientation of the C5'-Me and the steric effects that emanate from the alkyl substitution are the dominant determinants of thermal stability and are likely molecular origins of resistance against nucleases. X-ray and NMR structural analyses showed that the (S)-C5'-Me epimers are spatially and structurally more similar to their natural 5' nonmethylated counterparts than the corresponding (R)-epimers.
Asunto(s)
Exorribonucleasas/química , Oligonucleótidos/química , Pirimidinas/química , Secuencia de Bases , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación de Ácido Nucleico , Estereoisomerismo , TermodinámicaRESUMEN
Conjugation of synthetic triantennary N-acetyl-d-galactosamine (GalNAc) to small interfering RNA (siRNA) mediates binding to the asialoglycoprotein receptor (ASGPR) on the surface of hepatocytes, facilitating liver-specific uptake and siRNA-mediated gene silencing. The natural ß-glycosidic bond of the GalNAc ligand is rapidly cleaved by glycosidases in vivo. Novel GalNAc ligands with S-, and C-glycosides with both α- and ß-anomeric linkages, N-glycosides with ß-anomeric linkage, and the O-glycoside with α-anomeric linkage were synthesized and conjugated to siRNA either on-column during siRNA synthesis or through a high-throughput, post-synthetic method. Unlike natural GalNAc, modified ligands were resistant to glycosidase activity. The siRNAs conjugated to newly designed ligands had similar affinities for ASGPR and similar silencing activity in mice as the parent GalNAc-siRNA conjugate. These data suggest that other factors, such as protein-nucleic acid interactions and loading of the antisense strand into the RNA-induced silencing complex (RISC), are more critical to the duration of action than the stereochemistry and stability of the anomeric linkage between the GalNAc moiety of the ligand conjugated to the sense strand of the siRNA.
Asunto(s)
Receptor de Asialoglicoproteína , Galactosamina , ARN Interferente Pequeño , Complejo Silenciador Inducido por ARN , Animales , Ratones , Acetilgalactosamina/química , Receptor de Asialoglicoproteína/metabolismo , Glicósido Hidrolasas/metabolismo , Glicósidos/metabolismo , Hepatocitos/metabolismo , Ligandos , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/metabolismoRESUMEN
Asialoglycoprotein receptor (ASGPR) mediated delivery of triantennary N-acetylgalactosamine (GalNAc) conjugated short interfering RNAs (siRNAs) to hepatocytes is a promising paradigm for RNAi therapeutics. Robust and durable gene silencing upon subcutaneous administration at therapeutically acceptable dose levels resulted in the advancement of GalNAc-conjugated oligonucleotide-based drugs into preclinical and clinical developments. To systematically evaluate the effect of display and positioning of the GalNAc moiety within the siRNA duplex on ASGPR binding and RNAi activity, nucleotides carrying monovalent GalNAc were designed. Evaluation of clustered and dispersed incorporation of GalNAc units to the sense (S) strand indicated that sugar proximity is critical for ASGPR recognition, and location of the clustered ligand impacts the intrinsic potency of the siRNA. An array of nucleosidic GalNAc monomers resembling a trivalent ligand at or near the 3' end of the S strand retained in vitro and in vivo siRNA activity, similar to the parent conjugate design. This work demonstrates the utility of simple, nucleotide-based, cost-effective siRNA-GalNAc conjugation strategies.