Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Autoimmun ; 144: 103181, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38522129

RESUMEN

Inflammatory bowel diseases (IBDs) are chronic intestinal disorders often characterized by a dysregulation of T cells, specifically T helper (Th) 1, 17 and T regulatory (Treg) repertoire. Increasing evidence demonstrates that dietary polyphenols from Mangifera indica L. extract (MIE, commonly known as mango) mitigate intestinal inflammation and splenic Th17/Treg ratio. In this study, we aimed to dissect the immunomodulatory and anti-inflammatory properties of MIE using a reverse translational approach, by initially using blood from an adult IBD inception cohort and then investigating the mechanism of action in a preclinical model of T cell-driven colitis. Of clinical relevance, MIE modulates TNF-α and IL-17 levels in LPS spiked sera from IBD patients as an ex vivo model of intestinal barrier breakdown. Preclinically, therapeutic administration of MIE significantly reduced colitis severity, pathogenic T-cell intestinal infiltrate and intestinal pro-inflammatory mediators (IL-6, IL-17A, TNF-α, IL-2, IL-22). Moreover, MIE reversed colitis-induced gut permeability and restored tight junction functionality and intestinal metabolites. Mechanistic insights revealed MIE had direct effects on blood vascular endothelial cells, blocking TNF-α/IFN-γ-induced up-regulation of COX-2 and the DP2 receptors. Collectively, we demonstrate the therapeutic potential of MIE to reverse the immunological perturbance during the onset of colitis and dampen the systemic inflammatory response, paving the way for its clinical use as nutraceutical and/or functional food.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Mangifera , Adulto , Humanos , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales/metabolismo , Mucosa Intestinal , Modelos Animales de Enfermedad
2.
Pharmacol Res ; 187: 106595, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470548

RESUMEN

Alzheimer's disease (AD) is one of the most prevalent forms of neurodegenerative disorders. Previously, we have shown that in vivo administration of an IL-17 neutralizing antibody (IL-17Ab) rescues amyloid-ß-induced neuro-inflammation and memory impairment, demonstrating the pivotal role of IL-17 in AD-derived cognitive deficit. Recently, AD has been recognized as a more intriguing pathology affecting vascular networks and platelet function. However, not much is known about peripheral vascular inflammation and how pro-inflammatory circulating cells/mediators could affect peripheral vessels' function. This study aimed to evaluate whether IL-17Ab treatment could also impact peripheral AD features, such as systemic inflammation, peripheral vascular dysfunction, and related pro-thrombotic state in a non-genetic mouse model of AD. Mice were injected intracerebroventricularly with Aß1-42 peptide (3 µg/3 µl). To evaluate the systemic/peripheral protective profile of IL-17Ab, we used an intranasal administration of IL-17Ab (1 µg/10 µl) at 5, 12, and 19 days after Aß1-42 injection. Circulating Th17/Treg cells and related cyto-chemokines, haematological parameters, vascular/endothelial reactivity, platelets and coagulation function in mice were evaluated. IL-17Ab treatment ameliorates the systemic/peripheral inflammation, immunological perturbance, vascular/endothelial impairment and pro-thrombotic state, suggesting a key role for this cytokine in fostering inflammatory processes that characterize the multifaced aspects of AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Citocinas , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Interleucina-17 , Fragmentos de Péptidos/farmacología
3.
Cardiovasc Diabetol ; 21(1): 253, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36403025

RESUMEN

Galectins are ß-galactoside-binding proteins that bind and crosslink molecules via their sugar moieties, forming signaling and adhesion networks involved in cellular communication, differentiation, migration, and survival. Galectins are expressed ubiquitously across immune cells, and their function varies with their tissue-specific and subcellular location. Particularly galectin-1, -3, and -9 are highly expressed by inflammatory cells and are involved in the modulation of several innate and adaptive immune responses. Modulation in the expression of these proteins accompany major processes in cardiovascular diseases and metabolic disorders, such as atherosclerosis, thrombosis, obesity, and diabetes, making them attractive therapeutic targets. In this review we consider the broad cellular activities ascribed to galectin-1, -3, and -9, highlighting those linked to the progression of different inflammatory driven pathologies in the context of cardiovascular and metabolic disease, to better understand their mechanism of action and provide new insights into the design of novel therapeutic strategies.


Asunto(s)
Aterosclerosis , Enfermedades Metabólicas , Humanos , Galectina 1/metabolismo , Galectinas/química , Galectinas/metabolismo , Inmunidad , Aterosclerosis/tratamiento farmacológico , Enfermedades Metabólicas/tratamiento farmacológico
4.
Pharmacol Res ; 182: 106283, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35662629

RESUMEN

In the context of inflammation and immunity, there are fragmented and observational studies relating to the pharmacological activity of Mangifera indica L. and its main active component, mangiferin. Therefore, we aimed to analyze the potential beneficial effects of this plant extract (MIE, 90 % in mangiferin) in a mouse model of gouty arthritis, to allow the evaluation of cellular immune phenotypes and the biochemical mechanism/s beyond MIE activity. Gouty arthritis was induced by the intra-articular administration of MSU crystals (200 µg 20 µl-1), whereas MIE (0.1-10 mg kg-1) or corresponding vehicle (DMSO/saline 1:3) were orally administrated concomitantly with MSU (time 0), 6 and 12 h after the stimulus. Thereafter, knee joint score and oedema were evaluated in addition to western blot analysis for COX-2/mPGES-1 axis. Moreover, the analysis of pro/anti-inflammatory cyto-chemokines coupled with the phenotyping of the cellular infiltrate was performed. Treatment with MIE revealed a dose-dependent reduction in joint inflammatory scores with maximal inhibition observed at 10 mg kg-1. MIE significantly reduced leukocyte infiltration and activation and the expression of different pro-inflammatory cyto-chemokines in inflamed tissues. Furthermore, biochemical analysis revealed that MIE modulated COX-2/mPGES-1 and mPGDS-1/PPARγ pathways. Flow cytometry analysis also highlighted a prominent modulation of inflammatory monocytes (CD11b+/CD115+/LY6Chi), and Treg cells (CD4+/CD25+/FOXP3+) after MIE treatment. Collectively, the results of this study demonstrate a novel function of MIE to positively affect the local and systemic inflammatory/immunological perturbance in the onset and progression of gouty arthritis.


Asunto(s)
Artritis Gotosa , Mangifera , Extractos Vegetales , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/metabolismo , Ciclooxigenasa 2/metabolismo , Mangifera/química , Ratones , Extractos Vegetales/farmacología , Linfocitos T Reguladores , Células Th17
6.
Front Chem ; 12: 1405385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055045

RESUMEN

Plant extract-mediated fabrication of metal nanocomposites is used in cell proliferation inhibition and topical wound treatment, demonstrating significant effectiveness. Salvia hispanica L. (chia) seed extract (CE) is used as the reaction medium for the green fabrication of ecofriendly ZnO(CE) nanoparticles (NPs) and Ag/Ag2O(CE) and ZnO/Ag/Ag2O(CE) nanocomposites. The resultant nanoparticles and nanocomposite materials were characterized using UV-visible, Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray (EDX) techniques. In the context of antioxidant studies, ZnO/Ag/Ag2O(CE) exhibited 57% reducing power and 86% 2,2, diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging. All three materials showed strong antibacterial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E.coli), and Bacillus subtilis (B. subtilis) bacterial strains. Additionally, ZnO(CE), Ag/Ag2O(CE), and ZnO/Ag/Ag2O(CE) also revealed 64.47%, 42.56%, and 75.27% in vitro Michigan Cancer Foundation-7 (MCF7) cancer cell line inhibition, respectively, at a concentration of 100 µg/mL. Selectively, the most effective composite material, ZnO/Ag/Ag2O(CE), was used to evaluate in vivo wound healing potential in rat models. The study revealed 96% wound closure in 10 days, which was quite rapid healing compared to wound healing using clinically available ointment. Therefore, in conclusion, the ZnO/Ag/Ag2O(CE) nanocomposite material could be considered for further testing and formulation as a good anticancer and wound healing agent.

7.
Biomed Pharmacother ; 151: 113171, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643073

RESUMEN

Adaptive immunity relies on the efficient recruitment of T cells from the blood into peripheral tissues. However, the current understanding of factor(s) coordinating these events is incomplete. Previous studies on galectin-9 (Gal-9), have proposed a functionally significant role for this lectin in mediating leukocyte adhesion and transmigration. However, very little is known about its function in T cell migration. Here, we have investigated the role of the Gal-9 on the migration behaviour of both human primary CD4+ and CD8+ T cells. Our data indicate that Gal-9 supports both CD4+ and CD8+ T cell adhesion and transmigration in a glycan dependent manner, inducing L-selectin shedding and upregulation of LFA-1 and CXCR4 expression. Additionally, when immobilized, Gal-9 promoted capture and firm adhesion of T cells under flow, in a glycan and integrin-dependent manner. Using an in vivo model, dorsal air pouch, we found that Gal-9 deficient mice display impaired leukocyte trafficking, with a reduction in pro-inflammatory cytokines/chemokines generated locally. Furthermore, we also demonstrate that Gal-9 inhibits the chemotactic function of CXCL12 through direct binding. In conclusion, our study characterises, for the first time, the capture, adhesion, and migration behaviour of CD4+ and CD8+ T cells to immobilised /endothelial presented Gal-9, under static and physiological flow conditions. We also demonstrate the differential binding characteristics of Gal-9 to T cell subtypes, which could be of potential therapeutic significance, particularly in the treatment of inflammatory-based diseases, given Gal-9 ability to promote apoptosis in pathogenic T cell subsets.


Asunto(s)
Integrinas , Migración Transendotelial y Transepitelial , Animales , Linfocitos T CD8-positivos , Galectinas , Ratones , Polisacáridos
8.
Br J Pharmacol ; 179(9): 1857-1873, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33595097

RESUMEN

BACKGROUND AND PURPOSE: Recent biochemical and pharmacological studies have reported that in several tissues and cell types, microsomal PGE2 synthase (mPGES) and PPAR-γ expression are modulated by a variety of inflammatory factors and stimuli. Considering that very little is known about the biological effects promoted by IL-17 in the context of mPGES-1/PPAR-γ modulation, we sought to investigate the contribution of this unique cytokine on this integrated pathway during the onset of inflammation. EXPERIMENTAL APPROACH: We evaluated effects of PF 9184 (mPGES-1 inhibitor) and troglitazone (PPAR-γ agonist) in vitro, using the mouse macrophage cell line J774A.1. In vivo, the dorsal air pouch model in CD1 mice was used, and inflammatory infiltrates were analysed by flow cytometry. Locally produced cyto-chemokines and PGs were assessed using elisa assays. Western blots were also employed to determine the activity of various enzymes involved in downstream signalling pathways. KEY RESULTS: PF 9184 and troglitazone, in a time- and dose-dependent manner, modulated leukocyte infiltration, myeloperoxidase activity, and the expression of COX-2/mPGES-1, NF-кB/IкB-α, and mPTGDS-1/PPAR-γ, induced by IL-17. Moreover, both PF 9184 and troglitazone modulated PG (PGE2 , PGD2 , and PGJ2 ) production, the expression of different pro-inflammatory cyto-chemokines, and the recruitment of inflammatory monocytes, in response to IL-17. CONCLUSIONS AND IMPLICATIONS: Our data suggest that IL-17 may constitute a specific modulator of inflammatory monocytes during later phases of the inflammatory response. The results of this study show, for the first time, that the IL-17/mPGES-1/PPAR-γ pathway could represent a potential therapeutic target for inflammatory-based and immune-mediated diseases. LINKED ARTICLES: This article is part of a themed issue on Inflammation, Repair and Ageing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.9/issuetoc.


Asunto(s)
Interleucina-17 , PPAR gamma , Animales , Inflamación/metabolismo , Macrófagos , Ratones , Monocitos/metabolismo , PPAR gamma/metabolismo , Prostaglandina-E Sintasas/metabolismo
9.
Front Immunol ; 12: 762016, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777378

RESUMEN

Gout is caused by depositing monosodium urate (MSU) crystals within the articular area. The infiltration of neutrophils and monocytes drives the initial inflammatory response followed by lymphocytes. Interestingly, emerging evidence supports the view that in situ imbalance of T helper 17 cells (Th17)/regulatory T cells (Treg) impacts the subsequent damage to target tissues. Galectin-9 (Gal-9) is a modulator of innate and adaptive immunity with both pro- and anti-inflammatory functions, dependent upon its expression and cellular location. However, the specific cellular and molecular mechanisms by which Gal-9 modulates the inflammatory response in the onset and progression of gouty arthritis has yet to be elucidated. In this study, we sought to comprehensively characterise the functional role of exogenous Gal-9 in an in vivo model of MSU crystal-induced gouty inflammation by monitoring in situ neutrophils, monocytes and Th17/Treg recruited phenotypes and related cyto-chemokines profile. Treatment with Gal-9 revealed a dose-dependent reduction in joint inflammation scores, knee joint oedema and expression of different pro-inflammatory cyto-chemokines. Furthermore, flow cytometry analysis highlighted a significant modulation of infiltrating inflammatory monocytes (CD11b+/CD115+/LY6-Chi) and Th17 (CD4+/IL-17+)/Treg (CD4+/CD25+/FOXP-3+) cells following Gal-9 treatment. Collectively the results presented in this study indicate that the administration of Gal-9 could provide a new therapeutic strategy for preventing tissue damage in gouty arthritic inflammation and, possibly, in other inflammatory-based diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Artritis Gotosa/tratamiento farmacológico , Galectinas/uso terapéutico , Animales , Articulación del Tobillo/inmunología , Artritis Gotosa/inmunología , Células Cultivadas , Citocinas/inmunología , Humanos , Masculino , Ratones , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Ácido Úrico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA