Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(1): 106-123.e7, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38159573

RESUMEN

When the filtrate of the glomerulus flows through the renal tubular system, various microscopic sediment particles, including mineral crystals, are generated. Dislodging these particles is critical to ensuring the free flow of filtrate, whereas failure to remove them will result in kidney stone formation and obstruction. However, the underlying mechanism for the clearance is unclear. Here, using high-resolution microscopy, we found that the juxtatubular macrophages in the renal medulla constitutively formed transepithelial protrusions and "sampled" urine contents. They efficiently sequestered and phagocytosed intraluminal sediment particles and occasionally transmigrated to the tubule lumen to escort the excretion of urine particles. Mice with decreased renal macrophage numbers were prone to developing various intratubular sediments, including kidney stones. Mechanistically, the transepithelial behaviors of medulla macrophages required integrin ß1-mediated ligation to the tubular epithelium. These findings indicate that medulla macrophages sample urine content and remove intratubular particles to keep the tubular system unobstructed.


Asunto(s)
Cálculos Renales , Riñón , Ratones , Animales , Macrófagos
2.
Nucleic Acids Res ; 50(10): 5672-5687, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35640614

RESUMEN

Replication fork reversal occurs via a two-step process that entails reversal initiation and reversal extension. DNA topoisomerase IIalpha (TOP2A) facilitates extensive fork reversal, on one hand through resolving the topological stress generated by the initial reversal, on the other hand via its role in recruiting the SUMO-targeted DNA translocase PICH to stalled forks in a manner that is dependent on its SUMOylation by the SUMO E3 ligase ZATT. However, how TOP2A activities at stalled forks are precisely regulated remains poorly understood. Here we show that, upon replication stress, the SUMO-targeted ubiquitin E3 ligase RNF4 accumulates at stalled forks and targets SUMOylated TOP2A for ubiquitination and degradation. Downregulation of RNF4 resulted in aberrant activation of the ZATT-TOP2A-PICH complex at stalled forks, which in turn led to excessive reversal and elevated frequencies of fork collapse. These results uncover a previously unidentified regulatory mechanism that regulates TOP2A activities at stalled forks and thus the extent of fork reversal.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Replicación del ADN/genética , Inestabilidad Genómica/genética , Humanos , Proteínas Nucleares/metabolismo , Sumoilación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
3.
Mol Med ; 29(1): 49, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020186

RESUMEN

BACKGROUND: The cytoskeletal architecture of osteoclasts (OCs) and bone resorption activity must be appropriately controlled for proper bone remodeling, which is associated with osteoporosis. The RhoA protein of GTPase plays a regulatory role in cytoskeletal components and contributes to osteoclast adhesion, podosome positioning, and differentiation. Although osteoclast investigations have traditionally been performed by in vitro analysis, however, the results have been inconsistent, and the significance of RhoA in bone physiology and pathology is still unknown. METHODS: We generated RhoA knockout mice by specifically deleting RhoA in the osteoclast lineage to understand more about RhoA's involvement in bone remodeling. The function of RhoA in osteoclast differentiation and bone resorption and the mechanisms were assessed using bone marrow macrophages (BMMs) in vitro. The ovariectomized (OVX) mouse model was adopted to examine the pathological effect of RhoA in bone loss. RESULTS: Conditional deletion of RhoA in the osteoclast lineage causes a severe osteopetrosis phenotype, which is attributable to a bone resorption suppression. Further mechanistic studies suggest that RhoA deficiency suppresses Akt-mTOR-NFATc1 signaling during osteoclast differentiation. Additionally, RhoA activation is consistently related to the significant enhancement the osteoclast activity, which culminates in the development of an osteoporotic bone phenotype. Furthermore, in mice, the absence of RhoA in osteoclast precursors prevented occurring OVX-induced bone loss. CONCLUSION: RhoA promoted osteoclast development via the Akt-mTOR-NFATc1 signaling pathway, resulting a osteoporosis phenotype, and that manipulating RhoA activity might be a therapeutic strategy for osteoporotic bone loss.


Asunto(s)
Resorción Ósea , Osteoporosis , Animales , Ratones , Resorción Ósea/complicaciones , Resorción Ósea/patología , Diferenciación Celular , Factores de Transcripción NFATC/metabolismo , Osteogénesis , Osteoporosis/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
4.
Biochem Biophys Res Commun ; 652: 103-111, 2023 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-36841097

RESUMEN

Hepatocellular carcinoma (HCC) is an aggressive tumor triggered by various factors such as virus infection and alcohol abuse. Glucuronomannan polysaccharide (Gx) is a subtype of fucoidans that possesses many bioactivities, but its anti-tumor activities in HCC have not been reported. In this paper, the anti-tumor effects of glucuronomannan oligosaccharides (Gx) and its sulfated derivatives (GxSy) on hepatocarcinoma Huh7.5 cells were investigated. The anti-proliferation, anti-metastasis activities, and underlying mechanism of Gx and GxSy on Huh7.5 cells were analyzed and compared by MTT, wound healing, transwell, and western blotting assays, respectively. Results showed that the best anti-proliferation effects were G4S1 and G4S2 among 13 drugs, which were 38.67% and 30.14%, respectively. The cell migration rates were significantly inhibited by G2S1, G4S2, G6S2, and unsulfated Gn. In addition, cell invasion effects treated with G4S1, G4S2, and G6S1 decreased to 48.62%, 36.26%, and 42.86%, respectively. Furthermore, sulfated G4 regulated the expression of (p-) FAK and MAPK pathway, and sulfated G6 down-regulated the MAPK signaling pathway while activating the PI3K/AKT pathway. On the contrary, sulfated G2 and unsulfated Gx had no inhibited effects on the FAK-mTOR pathway. These results indicated that sulfated Gx derivatives have better anti-tumor activities than unsulfated Gx in cell proliferation and metastasis process in vitro, and those properties depend on the sulfation group levels. Moreover, degrees of polymerization of Gx also played a vital role in mechanisms and bioactivities. This finding shows the structure-activity relationship for developing and applying the marine oligosaccharide candidates.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Sulfatos/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Oligosacáridos/farmacología , Proliferación Celular , Movimiento Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
J Transl Med ; 21(1): 492, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480074

RESUMEN

BACKGROUND: Diet may influence biological aging and the discrepancy (∆age) between a subject's biological age (BA) and chronological age (CA). We aimed to investigate the correlation of dietary flavonoids with the ∆age of organs (heart, kidney, liver) and the whole body. METHOD: A total of 3193 United States adults were extracted from the National Health and Nutrition Examination Survey (NHANES) in 2007-2008 and 2017-2018. Dietary flavonoids intake was assessed using 24-h dietary recall method. Multiple linear regression analysis was performed to evaluate the association of dietary flavonoids intake with the ∆age of organs (heart, kidney, liver) and the whole body. BA was computed based on circulating biomarkers, and the resulting ∆age was tested as an outcome in linear regression analysis. RESULTS: The ∆age of the whole body, heart, and liver was inversely associated with higher flavonoids intake (the whole body ∆age ß = - 0.58, cardiovascular ∆age ß = - 0.96, liver ∆age ß = - 3.19) after adjustment for variables. However, higher flavonoids intake positively related to renal ∆age (ß = 0.40) in participants with chronic kidney disease (CKD). Associations were influenced by population characteristics, such as age, health behavior, or chronic diseases. Anthocyanidins, isoflavones and flavones had the strongest inverse associations between the whole body ∆age and cardiovascular ∆age among all the flavonoids subclasses. CONCLUSION: Flavonoids intake positively contributes to delaying the biological aging process, especially in the heart, and liver organ, which may be beneficial for reducing the long-term risk of cardiovascular or liver disease.


Asunto(s)
Flavonoides , Corazón , Adulto , Humanos , Encuestas Nutricionales , Hígado , Envejecimiento
6.
Cancer Cell Int ; 23(1): 117, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37328842

RESUMEN

BACKGROUND: As a core member of the FA complex, in the Fanconi anemia pathway, FAAP24 plays an important role in DNA damage repair. However, the association between FAAP24 and patient prognosis in AML and immune infiltration remains unclear. The purpose of this study was to explore its expression characteristics, immune infiltration pattern, prognostic value and biological function using TCGA-AML and to verify it in the Beat AML cohort. METHODS: In this study, we examined the expression and prognostic value of FAAP24 across cancers using data from TCGA, TARGET, GTEx, and GEPIA2. To further investigate the prognosis in AML, development and validation of a nomogram containing FAAP24 were performed. GO/KEGG, ssGSEA, GSVA and xCell were utilized to explore the functional enrichment and immunological features of FAAP24 in AML. Drug sensitivity analysis used data from the CellMiner website, and the results were confirmed in vitro. RESULTS: Integrated analysis of the TCGA, TARGET and GTEx databases showed that FAAP24 is upregulated in AML; meanwhile, high FAAP24 expression was associated with poor prognosis according to GEPIA2. Gene set enrichment analysis revealed that FAAP24 is implicated in pathways involved in DNA damage repair, the cell cycle and cancer. Components of the immune microenvironment using xCell indicate that FAAP24 shapes an immunosuppressive tumor microenvironment (TME) in AML, which helps to promote AML progression. Drug sensitivity analysis showed a significant correlation between high FAAP24 expression and chelerythrine resistance. In conclusion, FAAP24 could serve as a novel prognostic biomarker and play an immunomodulatory role in AML. CONCLUSIONS: In summary, FAAP24 is a promising prognostic biomarker in AML that requires further exploration and confirmation.

7.
Virol J ; 20(1): 250, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37915066

RESUMEN

The DNA damage response (DDR) is a signaling cascade that is triggered by DNA damage, involving the halting of cell cycle progression and repair. It is a key event leading to senescence, which is characterized by irreversible cell cycle arrest and the senescence-associated secretory phenotype (SASP) that includes the expression of inflammatory cytokines. Human cytomegalovirus (HCMV) is a ubiquitous pathogen that plays an important role in the senescence process. It has been established that DDR is necessary for HCMV to replicate effectively. This paper reviews the relationship between DDR, cellular senescence, and HCMV, providing new sights for virus-induced senescence (VIS).


Asunto(s)
Senescencia Celular , Citomegalovirus , Humanos , Citomegalovirus/genética , Senescencia Celular/genética , Transducción de Señal , Puntos de Control del Ciclo Celular , Daño del ADN
8.
Ecotoxicol Environ Saf ; 264: 115472, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716072

RESUMEN

Today, the existence of radio-frequency electromagnetic fields (RF-EMF) emitted from cell phones, wireless routers, base stations, and other sources are everywhere around our living environment, and the dose is increasing. RF-EMF have been reported to be cytotoxic and supposed to be a risk factor for various human diseases, thus, more attention is necessary. In recent years, interfere with mitochondrial calcium uptake by using mitochondrial calcium uniporter (MCU) inhibitor were suggested to be potential clinical treatment in mitochondrial calcium overload diseases, like neurodegeneration, ischemia/reperfusion injury, and cancer, but whether this approach increases the health risk of RF-EMF exposure are unknown. To address our concern, we did a preliminary study to determine whether inhibition of MCU will increase the genotoxicity of RF-EMF exposure in cells, and found that short-time (15 min) exposure to 1800 MHz RF-EMF induced significant DNA damage and cell apoptosis in mouse embryonic fibroblasts (MEFs) treated with Ruthenium 360 (Ru360), a specific inhibitor of MCU, but no significant effects on cell cycle, cell proliferation, or cell viability were observed. In conclusion, our results indicated that inhibiting MCU increases the genotoxicity of RF-EMF exposure, and more attention needs to be paid to the possible health impact of RF-EMF exposure under these treatments.


Asunto(s)
Calcio , Rutenio , Animales , Ratones , Humanos , Campos Electromagnéticos/efectos adversos , Fibroblastos , Daño del ADN
9.
Virol J ; 19(1): 224, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564838

RESUMEN

BACKGROUND: Human cytomegalovirus (HCMV), a member of the ß-herpesvirus family, causes the establishment of a latent infection that persists throughout the life of the host and can be reactivated when immunity is weakened. To date, there is no vaccine to prevent HCMV infection, and clinically approved drugs target the stage of viral replication and have obvious adverse reactions. Thus, development of novel therapeutics is urgently needed. METHODS: In the current study, we identified a naturally occurring pterostilbene that inhibits HCMV Towne strain replication in human diploid fibroblast WI-38 cells through Western blotting, qPCR, indirect immunofluorescence assay, tissue culture infective dose assays. The time-of-addition experiment was carried out to identify the stage at which pterostilbene acted. Finally, the changes of cellular senescence biomarkers and reactive oxygen species production brought by pterostilbene supplementation were used to partly elucidate the mechanism of anti-HCMV activity. RESULTS: Our findings revealed that pterostilbene prevented lytic cytopathic changes, inhibited the expression of viral proteins, suppressed the replication of HCMV DNA, and significantly reduced the viral titre in WI-38 cells. Furthermore, our data showed that pterostilbene predominantly acted after virus cell entry and membrane fusion. The half-maximal inhibitory concentration was determined to be 1.315 µM and the selectivity index of pterostilbene was calculated as 26.73. Moreover, cell senescence induced by HCMV infection was suppressed by pterostilbene supplementation, as shown by a decline in senescence-associated ß-galactosidase activity, decreased production of reactive oxygen species and reduced expression of p16, p21 and p53, which are considered biomarkers of cellular senescence. CONCLUSION: Together, our findings identify pterostilbene as a novel anti-HCMV agent that may prove useful in the treatment of HCMV replication.


Asunto(s)
Citomegalovirus , Estilbenos , Humanos , Citomegalovirus/genética , Especies Reactivas de Oxígeno/farmacología , Estilbenos/farmacología , Replicación Viral , Senescencia Celular
10.
Bioorg Med Chem Lett ; 75: 128945, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35987509

RESUMEN

Hyaluronan (HA) is a glycosaminoglycan polymer involved in cell phenotype change, inflammation modulation, and tumor metastasis progression. HA oligosaccharides have a higher solubility and drug-forming ability than polysaccharides. HA tetrasaccharide was reported as the smallest fragment required for inhibiting triple-negative breast cancer, but the anti-tumor activity of HA tetrasaccharide (HA4) and its sulfated derivatives in lung cancer is still unknown. In this study, HA4 was prepared via HA degradation by chondroitinase ABC (CSABC), while its sulfated derivatives were prepared by sulfur pyridine trioxide complex in N, N-dimethylformamide (DMF). Then, the anti-tumor activity was detected via MTT assay and xenograft tumor experiments, while the expression level change of apoptosis genes was analyzed by qRT-PCR. Electrospray mass spectrometry (ESI-MS) analysis showed several HA4 sulfated derivatives, GlcA2GlcNAc2 (SO3H)n contains 0-6 sulfation groups, which mainly contain 3-6, 2-3, and 0-1 sulfation groups were classified as HA4S1, HA4S2, and HA4S3, respectively. After the addition of 1.82 mg/mL HA4, HA4S1, HA4S2, and HA4S3, the cell viability of A549 cells was reduced to 81.2 %, 62.1 %, 50.3 %, and 65.9 %, respectively. Thus, HA4S2 was chosen for further measurement, the qRT-PCR results showed it significantly up-regulated the expression of genes in the apoptosis pathway. Moreover, HA4S2 exhibited stronger antitumor activity than HA4 in vivo and the tumor inhibition rate reached 36.90 %. In summary, this study indicated that the CSABC enzyme could effectively degrade HA into oligosaccharides, and sulfation modification was an effective method to enhance the antitumor activity of HA tetrasaccharides.


Asunto(s)
Adenocarcinoma del Pulmón , Ácido Hialurónico , Células A549 , Adenocarcinoma del Pulmón/tratamiento farmacológico , Condroitina ABC Liasa , Dimetilformamida , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Ácido Hialurónico/farmacología , Oligosacáridos/química , Polímeros , Piridinas , Sulfatos , Azufre , Óxidos de Azufre
11.
Artículo en Inglés | MEDLINE | ID: mdl-36194354

RESUMEN

PURPOSE: Sulfated galactofucan (SWZ-4), which was extracted from Sargassum thunbergii, has recently been reported to show anti-inflammatory and anticancer properties. The present study aimed to evaluate whether SWZ-4 attenuates atherosclerosis in apolipoprotein E-knockout (ApoE-KO) mice by suppressing the inflammatory response through the TLR4/MyD88/NF-κB signaling pathway. METHODS: Male ApoE-KO mice were fed with a high-fat diet for 16 weeks and intraperitoneally injected with SWZ-4. RAW246.7 cells were treated with lipopolysaccharide (LPS) and SWZ-4. Atherosclerotic lesions were measured by Sudan IV and oil red O staining. Serum lipid profiles, inflammatory cytokines, and mRNA and protein expression levels were evaluated. RESULTS: SWZ-4 decreased serum TNF-α, IL-6 and IL-1 levels, but did not reduce blood lipid profiles. SWZ-4 downregulated the mRNA and protein expression of TLR4 and MyD88, reduced the phosphorylation of p65, and attenuated atherosclerosis in the ApoE-KO mice (p < 0.01). In LPS-stimulated RAW 264.7 cells, SWZ-4 inhibited proinflammatory cytokine production and the mRNA expression of TLR4, MyD88, and p65 and reduced the protein expression of TLR4 and MyD88 and the phosphorylation of p65 (p < 0.01). CONCLUSION: These results suggest that SWZ-4 may exert an anti-inflammatory effect on ApoE-KO atherosclerotic mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway in macrophages and therefore may be a treatment for atherosclerosis.

12.
Circ Res ; 125(7): 707-719, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412728

RESUMEN

RATIONALE: PGC1α (peroxisome proliferator-activated receptor gamma coactivator 1α) represents an attractive target interfering bioenergetics and mitochondrial homeostasis, yet multiple attempts have failed to upregulate PGC1α expression as a therapy, for instance, causing cardiomyopathy. OBJECTIVE: To determine whether a fine-tuning of PGC1α expression is essential for cardiac homeostasis in a context-dependent manner. METHODS AND RESULTS: Moderate cardiac-specific PGC1α overexpression through a ROSA26 locus knock-in strategy was utilized in WT (wild type) mice and in G3Terc-/- (third generation of telomerase deficient; hereafter as G3) mouse model, respectively. Ultrastructure, mitochondrial stress, echocardiographic, and a variety of biological approaches were applied to assess mitochondrial physiology and cardiac function. While WT mice showed a relatively consistent PGC1α expression from 3 to 12 months old, age-matched G3 mice exhibited declined PGC1α expression and compromised mitochondrial function. Cardiac-specific overexpression of PGC1α (PGC1αOE) promoted mitochondrial and cardiac function in 3-month-old WT mice but accelerated cardiac aging and significantly shortened life span in 12-month-old WT mice because of increased mitochondrial damage and reactive oxygen species insult. In contrast, cardiac-specific PGC1α knock in in G3 (G3 PGC1αOE) mice restored mitochondrial homeostasis and attenuated senescence-associated secretory phenotypes, thereby preserving cardiac performance with age and extending health span. Mechanistically, age-dependent defect in mitophagy is associated with accumulation of damaged mitochondria that leads to cardiac impairment and premature death in 12-month-old WT PGC1αOE mice. In the context of telomere dysfunction, PGC1α induction replenished energy supply through restoring the compromised mitochondrial biogenesis and thus is beneficial to old G3 heart. CONCLUSIONS: Fine-tuning the expression of PGC1α is crucial for the cardiac homeostasis because the balance between mitochondrial biogenesis and clearance is vital for regulating mitochondrial function and homeostasis. These results reinforce the importance of carefully evaluating the PGC1α-boosting strategies in a context-dependent manner to facilitate clinical translation of novel cardioprotective therapies.


Asunto(s)
Longevidad , Miocitos Cardíacos/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Células Cultivadas , Femenino , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Especies Reactivas de Oxígeno/metabolismo , Telomerasa/genética , Telomerasa/metabolismo
13.
Cancer Sci ; 109(11): 3611-3622, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30168902

RESUMEN

Resibufogenin (RB), one of the major active compounds of the traditional Chinese medicine Chansu, has received considerable attention for its potency in cancer therapy. However, the anticancer effects and the underlying mechanisms of RB on pancreatic cancer remain elusive. Here, we found that RB inhibited the viability and induces caspase-dependent apoptosis in human pancreatic cancer cells Panc-1 and Aspc. Resibufogenin-induced apoptosis was through inhibition of constitutive nuclear factor-κB (NF-κB) activity and its target genes' expression, which was caused by downregulation of transforming growth factor-ß-activated kinase 1 (TAK1) levels and suppression of IκB kinase activity in Panc-1 and Aspc cells. This induction of TAK1-mediated NF-κB inactivation by RB was associated with increased glycogen synthase kinase-3 (GSK-3) phosphorylation and subsequent suppression of its activity. Moreover, RB-induced GSK-3 phosphorylation/inactivation acted through activation of protein kinase C but not Akt. Finally, RB suppressed human pancreatic tumor xenograft growth in athymic nude mice. Thus, our findings reveal a novel mechanism by which RB suppresses TAK1-mediated NF-κB activity through protein kinase C-dependent inhibition of GSK-3. Our findings provide a rationale for the potential application of RB in pancreatic cancer therapy.


Asunto(s)
Bufanólidos/administración & dosificación , Proteínas I-kappa B/metabolismo , FN-kappa B/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Bufanólidos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Clin Exp Pharmacol Physiol ; 44 Suppl 1: 30-37, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28602041

RESUMEN

The aging process directly impacts bodily functions on multiple levels, including a reduced ability to resist stress, damage and disease. Besides changes in metabolic control, the aging process coincides with the altered long non-coding RNAs (lncRNAs) expression, which are ≥200nt long class of non-protein coding RNAs. The majority of non-coding transcripts of mammalian organs and tissues are expressed in developmentally regulated and cell-type specific manners. Specific altered lncRNA level has been involved in induction and maintenance of the whole human body aging with highly specific spatial andtemporal expression patterns. Furthermore, many lncRNAs are transcribed in sense, antisense and bidirectional manners in the mammalian genome. They play a vital role in regulating organ or tissue differentiation during aging by binding with miRNA or proteins to act as a decoy. Recently, the correlation between lncRNAs and aging has been studied intensely. Here, we have summarized some examples of known and novel lncRNAs that have been implicated in the aging process in the whole mammalian body and we discuss these patterns, conservation and characters during aging. This may further promote the development of research on lncRNAs and the aging process.


Asunto(s)
Envejecimiento/genética , ARN Largo no Codificante/genética , Factores de Edad , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , ARN Largo no Codificante/metabolismo , Transducción de Señal , Transcriptoma
16.
J Sci Food Agric ; 97(4): 1359-1366, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27363537

RESUMEN

BACKGROUND: Studies in animal models have shown that allicin, a major biologically active component of garlic, can play a role in the prevention of tissue fibrosis in the liver, lung and heart, mainly related to the inhibition of fibroblast proliferation, fibrogenic cytokine secretion and extracellular matrix synthesis. This study aimed to investigate the protective effects of allicin on renal damage in streptozotocin (STZ)-induced diabetic rats. STZ-induced diabetic rats were administered allicin (15, 30 and 45 mg · kg-1 · day-1 ) via daily intra-gastric gavage for 12 weeks. The levels of fasting blood glucose (FBG), blood urea nitrogen (BUN), serum creatinine (sCr), lipid and 24 h urine albumin excretion (UAE) were measured at the end of weeks 4, 8 and 12. The renal histopathology and the expression levels of collagen I, transforming growth factor ß1 (TGF-ß1) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) were measured using immunohistochemistry and/or western blotting. RESULTS: In 12 week STZ-induced diabetic rats, severe hyperglycemia and albuminuria were markedly developed. Treatment with allicin for 12 weeks ameliorated diabetes-induced morphological alterations of the kidney and decreased FBG, BUN, sCr, triglyceride (TG) and 24 h UAE in diabetic rats. The expression levels of collagen I, TGF-ß1 and p-ERK1/2 were significantly decreased by allicin treatment. CONCLUSION: These results suggested that allicin may play a protective role in diabetic nephropathy via the TGF-ß1/ERK pathway in diabetic rats. © 2016 Society of Chemical Industry.


Asunto(s)
Allium/química , Glucemia/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/tratamiento farmacológico , Riñón/efectos de los fármacos , Fitoterapia , Ácidos Sulfínicos/uso terapéutico , Albúminas/metabolismo , Albuminuria/tratamiento farmacológico , Albuminuria/etiología , Animales , Nitrógeno de la Urea Sanguínea , Colágeno Tipo I/metabolismo , Creatinina/sangre , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Nefropatías Diabéticas/inducido químicamente , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Disulfuros , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/etiología , Riñón/metabolismo , Riñón/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosforilación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Raíces de Plantas , Ratas Sprague-Dawley , Estreptozocina , Ácidos Sulfínicos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Triglicéridos/sangre
17.
Carbohydr Polym ; 335: 122101, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616079

RESUMEN

In this study, we purified a partially acetylated heteropolysaccharide (Ts1-1A) from the fruit bodies of Trametes sanguinea Lloyd through cold water extraction and serial chromatographic separation. The purified polysaccharide Ts1-1A (12.8 kDa) was characterized as a branched mannogalactofucan with a backbone of alternately connected 1,3-linked α-Fucp and 1,6-linked α-Galp, which was partially substituted by non-reducing end units of ß-Manp at O-2 and O-3 positions of 1,6-linked α-Galp. Ts1-1A showed pronounced anti-human cytomegalovirus activity at the concentration of 200 and 500 µg/mL in systematical assessments including morphological changes, western blotting, qPCR, indirect immunofluorescence and tissue culture infective dose assays. Moreover, Ts1-1A exerted its antiviral activity at two distinct stages of viral proliferation manifesting as significantly inhibiting viral protein (IE1/2 and p52) expression and reducing viral gene (UL123, UL44 and UL32) replication in the HCMV-infected WI-38 cells. At viral attachment stage, Ts1-1A interacted with HCMV and prevented HCMV from attaching to its host cells. While at early phase of viral replication stage, Ts1-1A suppressed HCMV replication by downregulating NQO1 and HO-1 proteins related to oxidative stress as an antioxidant. To sum up, Ts1-1A is a promising anti-HCMV agent which could be developed for HCMV infection prevention and therapy.


Asunto(s)
Citomegalovirus , Polyporaceae , Humanos , Trametes , Antivirales/farmacología
18.
Phytother Res ; 27(3): 417-21, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22628222

RESUMEN

Berberine (BBR) has been suggested to be a hepatoprotective agent for oxidative-stress-related liver diseases because of its antioxidant activity. However, the antioxidant mechanisms of BBR are still not fully understood. In the present study, the protective effect of BBR was evaluated, and the underlying molecular mechanisms were investigated in hepatic cell line L02. Results from cell viability and apoptosis assay showed that in cells exposed to hydrogen peroxide (H2 O2 ), the pretreatment of 12 µM BBR could increase cell viability by 19.10 ± 7.40% and reduce apoptotic cells by 7.91 ± 0.78%. A significant change in the expression levels of sirtuin 1 (SIRT1) and apoptosis-related proteins was also observed in the BBR-pretreated hepatocytes under exposure to H2 O2 . Furthermore, BBR exhibited a time-dependent effect on upregulation of SIRT1 in L02 cells. This study demonstrated that the protective effect of BBR against H2 O2 -induced apoptosis was associated with regulation of SIRT1 in hepatic cell line L02, which provided a possible explanation for its antioxidant activity, and implied an application of BBR for the therapeutic relevance in oxidative-stress-related liver diseases.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Berberina/farmacología , Hepatocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sirtuina 1/metabolismo , Línea Celular , Hepatocitos/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Regulación hacia Arriba/efectos de los fármacos
19.
Exp Gerontol ; 172: 112057, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36513214

RESUMEN

Osteoporosis (OP) is a systemic bone degenerative disease characterized by low bone mass and deteriorated microarchitecture of bone tissue, causing high morbidity and mortality rates. Bone resorption by overactivated osteoclasts (OCs) is the main cause of osteoporosis. Glucuronomannan and its oligomers (Gs) and their sulfated derivatives (SGs) were previously prepared. The anti-osteoporosis activities of these glycans were evaluated. Firstly, we determined the viability of RAW264.7 by CCK-8 test. Nextly, we investigated the inhibitory effects of Gs and SGs on the differentiation of RAW264.7 cells into OCs using tartrate-resistant acid phosphatase (TRAP) staining, F-actin ring staining, qualitative reverse-transcription polymerase chain reaction(qRT-PCR) and western blotting. TRAP staining revealed that Gs significantly blocked RANKL-induced OC generation while SGs did not exhibit this ability. F-actin staining assays demonstrated that Gs inhibits RANKL-induced actin ring formation. qRT-PCR analyses indicated that Gs dose-dependently inhibited the expression of OCs marker genes including Trap, NFATc1, c-Fos, DC-Stamp and ATP60 during the differentiation process, while SGs did not suppress. Regarding the mechanism of Gs, it was found that Gs suppressed osteoclastogenesis via inhibiting the degradation of IRF-8 and interfering with NF-κB pathway activation. Together, these results suggest that Gs have the ability to inhibit osteoclastogenesis by modulating IRF-8 signaling.


Asunto(s)
Osteoporosis , Sargassum , Actinas , Diferenciación Celular , FN-kappa B/metabolismo , Factores de Transcripción NFATC , Oligosacáridos/farmacología , Osteoclastos , Osteogénesis , Osteoporosis/metabolismo , Sargassum/metabolismo , Animales , Ratones
20.
Nanomedicine (Lond) ; 18(10): 833-843, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37222128

RESUMEN

Aim: We aimed to analyze efficacy and adverse events for nano-bound paclitaxel in cancer treatment, which remain controversial. Method: We obtained relevant previously published studies and extracted data on the efficacy and adverse events of nano-bound paclitaxel. Fifteen randomized clinical trials were included. Results: Nanoparticle albumin-bound (Nab-) paclitaxel was beneficial in terms of objective response rate (odds ratio [OR]: 1.08, 95% CI: 0.72-1.62) and partial response (OR: 1.28, 95% CI: 0.89-1.83), while polymeric micellar (PM-) paclitaxel was beneficial in terms of objective response rate (OR: 1.76) and partial disease (hazard ratio [HR]: 0.65). Both Nab-paclitaxel and PM-paclitaxel resulted in slightly longer overall survival (HR: 0.93 and 0.94) and progression-free survival (HR: 0.93 and 0.87) when compared with solvent-based paclitaxel. Peripheral sensory neuropathy (OR: 3.47), neutropenia (OR: 1.79) and anemia (OR: 1.79) were more frequent after Nab-paclitaxel treatment. Conclusion: Nanopaclitaxel formulations have a better efficacy in cancer treatment; however, they increase the risk of hematological adverse events and peripheral sensory neuropathy. The PM-paclitaxel treatment had a high safety effect.


This was a pooled analysis of the efficacy and adverse events of nano-bound paclitaxel (polymeric micellar [PM] or nanoparticle-bound formulation) in cancer treatment. Relevant studies published since 2016 were retrieved from the PubMed, ISI Web of Science and Embase databases. Fifteen randomized clinical trials (4925 patients) were included in this meta-analysis. Compared with solvent-based paclitaxel, nanoparticle albumin-bound paclitaxel (Nab-paclitaxel) had beneficial effects in terms of objective response rate and partial response, while PM-paclitaxel exhibited beneficial effects in terms of objective response rate and partial disease. Both Nab-paclitaxel and PM-paclitaxel were associated with a slightly longer overall survival and better progression-free survival when compared with solvent-based paclitaxel. Peripheral sensory neuropathy, neutropenia and anemia adverse events were more frequent after Nab-paclitaxel treatment. The nanopaclitaxel formulation had an improved efficacy in treatment of solid-organ tumors, but it increased the risk of hematological adverse events and peripheral sensory neuropathy. This study provided evidence on the efficacy and safety of the nanocarriers of paclitaxel.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Paclitaxel/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Albúminas/efectos adversos , Neoplasias Pulmonares/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA