Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 25(8): 5233-5250, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39018332

RESUMEN

A promising trend in tissue engineering is using biomaterials to improve the control of drug concentration in targeted tissue. These vehicular systems are of specific interest when the required treatment time window is higher than the stability of therapeutic molecules in the body. Herein, the capacity of silk fibroin hydrogels to release different molecules and drugs in a sustained manner was evaluated. We found that a biomaterial format, obtained by an entirely aqueous-based process, could release molecules of variable molecular weight and charge with a preferential delivery of negatively charged molecules. Although the theoretical modeling suggested that drug delivery was more likely to be driven by Fickian diffusion, the external media had a considerable influence on the release, with lipophilic organic solvents such as acetonitrile-methanol (ACN-MeOH) intensifying the release of hydrophobic molecules. Second, we found that silk fibroin could be used as a vehicular system to treat a variety of brain disorders as this biomaterial sustained the release of different factors with neurotrophic (brain-derived neurotrophic factor) (BDNF), chemoattractant (C-X-C motif chemokine 12) (CXCL12), anti-inflammatory (TGF-ß-1), and angiogenic (VEGF) capacities. Finally, we demonstrated that this biomaterial hydrogel could release cholesteronitrone ISQ201, a nitrone with antioxidant capacity, showing neuroprotective activity in an in vitro model of ischemia-reoxygenation. Given the slow degradation rate shown by silk fibroin in many biological tissues, including the nervous system, our study expands the restricted list of drug delivery-based biomaterial systems with therapeutic capacity for both short- and especially long-term treatment windows and has merit for use with brain pathologies.


Asunto(s)
Sistemas de Liberación de Medicamentos , Fibroínas , Hidrogeles , Hidrogeles/química , Hidrogeles/farmacología , Fibroínas/química , Animales , Sistemas de Liberación de Medicamentos/métodos , Materiales Biocompatibles/química , Humanos , Ratas , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación
2.
Bioorg Chem ; 150: 107537, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38852313

RESUMEN

In the search for new small molecules for the therapy of neuropathic pain, we found that 2-{3-[N-(1-benzylpiperidin-4-yl)propyl]amino}-6-[N-methyl-N-(prop-2-yn-1-yl)amino]-4-phenylpyridine-3,5-dicarbonitrile (12) induced a robust antiallodynic effect in capsaicin-induced mechanical allodynia, a behavioural model of central sensitization, through σ1R antagonism. Furthermore, administration of compound 12 to neuropathic animals, fully reversed mechanical allodynia, increasing its mechanical threshold to levels that were not significantly different from those found in paclitaxel-vehicle treated mice or from basal levels before neuropathy was induced. Ligand 12 is thus a promising hit-compound for the therapy of neuropathic pain.


Asunto(s)
Neuralgia , Nitrilos , Animales , Neuralgia/tratamiento farmacológico , Ratones , Masculino , Nitrilos/química , Nitrilos/farmacología , Nitrilos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Analgésicos/farmacología , Analgésicos/química , Analgésicos/síntesis química , Analgésicos/uso terapéutico , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Piridinas/uso terapéutico , Receptor Sigma-1 , Capsaicina/farmacología , Capsaicina/química , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente
3.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892102

RESUMEN

The synthesis, antioxidant capacity, and anti-inflammatory activity of four novel N-benzyl-2-[4-(aryl)-1H-1,2,3-triazol-1-yl]ethan-1-imine oxides 10a-d are reported herein. The nitrones 10a-d were tested for their antioxidant properties and their ability to inhibit soybean lipoxygenase (LOX). Four diverse antioxidant tests were used for in vitro antioxidant assays, namely, interaction with the stable free radical DPPH (1,1-diphenyl-2-picrylhydrazyl radical) as well as with the water-soluble azo compound AAPH (2,2'-azobis(2-amidinopropane) dihydrochloride), competition with DMSO for hydroxyl radicals, and the scavenging of cationic radical ABTS•+ (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical cation). Nitrones 10b, 10c, and 10d, having the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, exhibited high interaction with DPPH (64.5-81% after 20 min; 79-96% after 60 min), whereas nitrone 10a with unfunctionalized phenyl group showed the lowest inhibitory potency (57% after 20 min, 78% after 60 min). Nitrones 10a and 10d, decorated with phenyl and 4-fluoro-3-methylphenyl motif, respectively, appeared the most potent inhibitors of lipid peroxidation. The results obtained from radical cation ABTS•+ were not significant, since all tested compounds 10a-d showed negligible activity (8-46%), much lower than Trolox (91%). Nitrone 10c, bearing the 2,4-difluorophenyl motif, was found to be the most potent LOX inhibitor (IC50 = 10 µM).


Asunto(s)
Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/síntesis química , Lipooxigenasa/metabolismo , Glycine max/enzimología , Glycine max/química , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Iminas/química , Iminas/farmacología , Compuestos de Bifenilo/química , Compuestos de Bifenilo/antagonistas & inhibidores , Picratos/química , Picratos/antagonistas & inhibidores , Óxidos de Nitrógeno/química , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/síntesis química
4.
Antioxidants (Basel) ; 13(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38671888

RESUMEN

The recent advances in research on the use of the antioxidant and neuroprotective agent α-phenyl-N-tert-butylnitrone (PBN) for the therapy of stroke have been reviewed. The protective effect of PBN in the transient occlusion of the middle cerebral artery (MCAO) has been demonstrated, although there have been significant differences in the neuronal salvaging effect between PBN-treated and untreated animals, each set of data having quite large inter-experimental variation. In the transient forebrain ischemia model of gerbil, PBN reduces the mortality after ischemia and the neuronal damage in the hippocampal cornu ammonis 1 (CA1) area of the hippocumpus caused by ischemia. However, PBN fails to prevent postischemic CA1 damage in the rat. As for focal cerebral ischemia, PBN significantly reduces cerebral infarction and decreases neurological deficit after ischemia using a rat model of persistent MCAO in rats. Similarly, the antioxidant and neuroprotective capacity of a number of PBN-derived nitrones prepared in the author's laboratory have also been summarized here, showing their high potential therapeutic power to treat stroke.

5.
J Med Chem ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092855

RESUMEN

In this Perspective, we have brought together available biological evidence on hydrazides as histone deacetylase inhibitors (HDACis) and as a distinct type of Zn-binding group (ZBG) to be reviewed for the first time in the literature. N-Alkyl hydrazides have transformed the field, providing innovative and practical chemical tools for selective and effective inhibition of specific histone deacetylase (HDAC) enzymes, in addition to the usual hydroxamic acid and o-aminoanilide ZBG-bearing HDACis. This has enabled efficient targeting of neurodegenerative diseases such as Alzheimer's disease, cancer, cardiovascular diseases, and protozoal pathologies.

6.
Eur J Med Chem ; 266: 116133, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218126

RESUMEN

Herein, we report the synthesis, antioxidant and biological evaluation of 32 monosubstituted α-arylnitrones derived from α-phenyl-tert-butyl nitrone (PBN) in the search for neuroprotective compounds for ischemic stroke therapy, trying to elucidate the structural patterns responsible for their neuroprotective activity. Not surprisingly, the N-tert-butyl moiety plays beneficious role in comparison to other differently N-substituted nitrone groups. It seems that electron donor substituents at the ortho position and electron withdrawing substituents at the meta position of the aryl ring induce good neuroprotective activity. As a result, (Z)-N-tert-butyl-1-(2-hydroxyphenyl)methanimine oxide (21a) and (Z)-N-tert-butyl-1-(2-(prop-2-yn-1-yloxy)phenyl)methanimine oxide (24a) showed a significant increase in neuronal viability in an experimental ischemia model in primary neuronal cultures, and induced neuroprotection and improved neurodeficit score in an in vivo model of transient cerebral ischemia. These results showed that nitrones 21a and 24a are new effective small and readily available antioxidants, and suitable candidates for further structure optimization in the search for new phenyl-derived nitrones for the treatment of ischemic stroke and related diseases.


Asunto(s)
Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Humanos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Neuroprotección , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Óxidos de Nitrógeno/farmacología , Óxidos de Nitrógeno/uso terapéutico , Isquemia , Óxidos N-Cíclicos
7.
Biomolecules ; 14(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38785995

RESUMEN

Olesoxime, a cholesterol derivative with an oxime group, possesses the ability to cross the blood-brain barrier, and has demonstrated excellent safety and tolerability properties in clinical research. These characteristics indicate it may serve as a centrally active ligand of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), whose disruption of activity with organophosphate compounds (OP) leads to uncontrolled excitation and potentially life-threatening symptoms. To evaluate olesoxime as a binding ligand and reactivator of human AChE and BChE, we conducted in vitro kinetic studies with the active metabolite of insecticide parathion, paraoxon, and the warfare nerve agents sarin, cyclosarin, tabun, and VX. Our results showed that both enzymes possessed a binding affinity for olesoxime in the mid-micromolar range, higher than the antidotes in use (i.e., 2-PAM, HI-6, etc.). While olesoxime showed a weak ability to reactivate AChE, cyclosarin-inhibited BChE was reactivated with an overall reactivation rate constant comparable to that of standard oxime HI-6. Moreover, in combination with the oxime 2-PAM, the reactivation maximum increased by 10-30% for cyclosarin- and sarin-inhibited BChE. Molecular modeling revealed productive interactions between olesoxime and BChE, highlighting olesoxime as a potentially BChE-targeted therapy. Moreover, it might be added to OP poisoning treatment to increase the efficacy of BChE reactivation, and its cholesterol scaffold could provide a basis for the development of novel oxime antidotes.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Humanos , Butirilcolinesterasa/metabolismo , Butirilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/química , Ligandos , Oximas/química , Oximas/farmacología , Reactivadores de la Colinesterasa/farmacología , Reactivadores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Colestenonas/farmacología , Colestenonas/química , Cinética , Sarín/química , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/química , Proteínas Ligadas a GPI/antagonistas & inhibidores , Antídotos/farmacología , Antídotos/química , Colesterol/metabolismo , Colesterol/química , Compuestos Organofosforados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA