RESUMEN
High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3-17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments20 such that mechanistically relevant insight emerges.
Asunto(s)
Artefactos , Rayos Láser , Mioglobina , Cristalografía/instrumentación , Cristalografía/métodos , Electrones , Mioglobina/química , Mioglobina/metabolismo , Mioglobina/efectos de la radiación , Fotones , Conformación Proteica/efectos de la radiación , Teoría Cuántica , Rayos XRESUMEN
The upper critical solution temperature (UCST)-type liquid-liquid phase separation of imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], where n represents the alkyl chain length of the cation, n = 6, 8, 10, and 12) binary solutions with formamide (FA) was examined as a function of temperature and the FA mole fraction xFA. The two-phase region (immiscible region) of the solutions is much larger and expands more with the increase in n, in comparison with the previous [Cnmim][TFSI]-1,4-dioxane (1,4-DIO) systems. An array of spectroscopic techniques, including 1H and 13C NMR and IR combined with molecular dynamics (MD) simulations, was conducted on the present binary systems to clarify the microscopic interactions that contribute to the phase-separation mechanism. The hydrogen-bonding interactions of the imidazolium ring H atoms are more favorable with the O atoms of the FA molecules than with 1,4-DIO molecules, whereas the latter interact more favorably with the alkyl chain of the cation. Upon lowering the temperature, the FA molecules gradually self-aggregate through self-hydrogen bonding to form FA clusters. Concomitantly, clusters of ILs are formed via the electrostatic interaction between the counter ions and the dispersion force among the IL alkyl chains. Small-angle neutron scattering (SANS) experiments on the [C6mim][TFSI]-FA-d2 and [C8mim][TFSI]-FA-d2 systems revealed, similarly to [Cnmim][TFSI]-1,4-DIO systems, the crossover of the mechanism from the 3D-Ising mechanism around the UCST xFA to the mean-field mechanism at both sides of the mole fraction. Interestingly, the xFA range of the 3D-Ising mechanism for the FA systems is wider compared with the range of the 1,4-DIO systems. In this way, the self-hydrogen bonding among FA molecules most significantly governs the phase equilibria of the [Cnmim][TFSI]-FA systems.
RESUMEN
The amphiphilicity and denaturation efficiency of urea can be tuned via alkylation. Although the interaction of alkylureas with water and proteins has been studied in detail, hydration of 1-methylurea has remained elusive, precluding the isolation of the effect of an individual methyl group. Here, we study water dynamics in the hydration shell of 1-methylurea (1-MU) using infrared absorption and ultrafast infrared spectroscopies. We find that 1-MU hardly affects the hydrogen-bond distribution of water as probed by the OD stretching vibration of HOD molecules. Polarization resolved infrared pump-probe experiments reveal that 1-MU slows down the rotational dynamics of up to 3 water molecules in its hydration shell. A comparison to earlier results for other alkylureas suggests that further alkylation does not necessarily slow down the rotational dynamics of additional water molecules. Two-dimensional infrared experiments show that 1-MU markedly slows down the hydrogen-bond fluctuation dynamics of water, yet similar to what has been found for urea and dimethylureas. Remarkably, (alkyl-)ureas that share a similar effect on water's hydrogen-bond fluctuation dynamics have a similar (modest) protein denaturation tendency. As such, not only the hydrophobicity but also hydration of hydrophilic fragments of alkylureas may be relevant to explain their function toward biomolecules.
Asunto(s)
Urea , Agua , Hidrógeno , Enlace de Hidrógeno , Espectrofotometría Infrarroja/métodos , Agua/químicaRESUMEN
Liquid-liquid phase separation of binary systems for imidazolium-based ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Cnmim][TFSI], where n represents the alkyl chain length of the cation), with 1,4-dioxane (1,4-DIO) was observed as a function of temperature and 1,4-DIO mole fraction, x1,4-DIO. The phase diagrams obtained for [Cnmim][TFSI]-1,4-DIO systems showed that the miscible region becomes wider with an increase in the alkyl chain length, n. For n = 6 and 8, an upper critical solution temperature (UCST) was found. To clarify the mechanism of the UCST-type phase separation, small-angle neutron scattering (SANS) experiments were conducted on the [C8mim][TFSI]-1,4-DIO-d8 system at several x1,4-DIO. The critical exponents of γ and ν determined from the SANS experiments showed that phase separation of the system at the UCST mole fraction occurs via the 3D-Ising mechanism, while that on both sides of UCST occurs via the mean field mechanism. Thus, the crossover of mechanism was observed for this system. The microscopic interactions among the cation, anion, and 1,4-DIO were elucidated using 1H and 13C NMR and IR spectroscopic techniques, together with the theoretical method of molecular dynamics (MD) simulations. The results on the microscopic interactions suggest that 1,4-DIO molecules cannot strongly interact with H atoms on the imidazolium ring, while they interact with the octyl chain of the cation through dispersion force. With a decrease in temperature, 1,4-DIO molecules gradually aggregate to form 1,4-DIO clusters in the binary solutions. The strengthening of the C-Hâ¯O interaction between 1,4-DIO molecules by cooling is the key to the phase separation. Of course, the electrostatic interaction between the cations and anions results in the formation of IL clusters. When IL clusters are excluded from 1,4-DIO clusters, liquid-liquid phase separation occurs. Accordingly, the balance between the electrostatic force between the cations and anions and the C-Hâ¯O interaction between the 1,4-DIO determines the 3D-Ising or the mean field mechanism of phase separation.
RESUMEN
The mixing states of an imidazolium-based ionic liquid (IL), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][TFSI]), with cycloethers, tetrahydrofuran (THF), 1,4-dioxane (1,4-DIO), and 1,3-dioxane (1,3-DIO), have been clarified on the meso- and microscopic scales using small-angle neutron scattering (SANS), IR, and NMR experiments and molecular dynamics (MD) simulations. SANS profiles of [C4mim][TFSI]-THF-d8 and -1,4-DIO-d8 solutions at various mole fractions xML of molecular liquid (ML) have shown that [C4mim][TFSI] is heterogeneously mixed with THF and 1,4-DIO on the mesoscopic scale, to a high extent in the case of the latter solution. In fact, [C4mim][TFSI] and 1,4-DIO are not miscible with each other above the 1,4-DIO mole fraction x1,4-DIO of 0.903, whereas the IL can be mixed with THF over the entire range of THF mole fraction xTHF. The results of IR and 1H and 13C NMR measurements and MD simulations showed that cycloether molecules are more strongly hydrogen-bonded with the imidazolium ring H atoms in the order of THF > 1,3-DIO > 1,4-DIO. Although 1,4-DIO and 1,3-DIO molecules are structural isomers, our results point out that 1,4-DIO cannot be strongly hydrogen-bonded with the ring H atoms. The solvation of [TFSI]- by cycloethers through the dipole-dipole interaction promotes hydrogen bonding between the ring H atoms and cycloethers. Thus, 1,4-DIO with the lowest dipole moment cannot easily eliminate [TFSI]- from the imidazolium ring. This results in the weakest hydrogen bonds of 1,4-DIO with the ring H atoms. 2D-NMR of 1H{1H} rotating-frame nuclear Overhauser effect spectroscopy (ROESY) showed the interaction of the three cycloethers with the butyl group of [C4mim]+. 1,4-DIO mainly interacts with the butyl group by the dispersion force, whereas THF interacts with the IL by both hydrogen bonding and dispersion force. This leads to the higher heterogeneity of the 1,4-DIO solutions compared to the THF solutions.
RESUMEN
The control of ligand-field splitting in iron (II) complexes is critical to slow down the metal-to-ligand charge transfer (MLCT)-excited states deactivation pathways. The gap between the metal-centered states is maximal when the coordination sphere of the complex approaches an ideal octahedral geometry. Two new iron(II) complexes (C1 and C2), prepared from pyridylNHC and pyridylquinoline type ligands, respectively, have a near-perfect octahedral coordination of the metal. The photophysics of the complexes have been further investigated by means of ultrafast spectroscopy and TD-DFT modeling. For C1, it is shown that-despite the geometrical improvement-the excited state deactivation is faster than for the parent pseudo-octahedral C0 complex. This unexpected result is due to the increased ligand flexibility in C1 that lowers the energetic barrier for the relaxation of 3MLCT into the 3MC state. For C2, the effect of the increased ligand field is not strong enough to close the prominent deactivation channel into the metal-centered quintet state, as for other Fe-polypyridine complexes.
Asunto(s)
Compuestos Ferrosos/química , Compuestos Ferrosos/síntesis química , Hierro/química , Termodinámica , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Ligandos , Estructura Molecular , Difracción de Rayos XRESUMEN
The catalytic efficiency of diol-based organocatalysts has been shown to strongly depend on the diols molecular structure including hydrogen-bonding, yet, the underlying molecular-level origins have remained elusive. Herein a study on the inter- and intramolecular hydrogen-bonding of two isomeric diol-based catalysts (TADDOLs) in solution is presented: 1-Naphthyl substituted TADDOL (1nTADDOL), which exhibits high catalytic efficiency, and 2-naphthyl substituted TADDOL (2nTADDOL), which is a poor catalyst. Using nuclear magnetic resonance and infrared spectroscopy, comparable hydrogen-bond strengths for both TADDOLs in solution were found, however, significantly slower bonding dynamics for 1nTADDOL. In aromatic solvents, 1nTADDOL forms less, but longer-lived, intermolecular OHâ â â π bonds to solvent molecules, as compared to 2nTADDOL. Thus, rather than previously suggested differences in intermolecular hydrogen-bonding strengths, the results suggest that the hydrogen-bonding kinetics and entropies differ for both TADDOLs, which also explains their vastly different catalytic activities.
RESUMEN
Alkylated ureas are frequently used amphiphiles to mediate biomolecule water interactions, yet their hydrophobic substitution pattern critically affects their function. These differences can be traced back to their hydration, which is poorly understood. Here, we investigate subtle effects of the hydrophobic pattern of ureas on hydration dynamics using a combination of linear and non-linear infrared spectroscopies on the OD stretching vibration of HDO. Isomeric 1,3-dimethylurea (1,3-DMU), 1,1-dimethylurea (1,1-DMU) and 1-ethylurea (1-EU) exhibit very similar and rather weak modulation of the water hydrogen-bond strength distribution. Yet, only 1,3-DMU and 1,1-DMU enhance the hydrogen-bond heterogeneity and slow-down its fluctuation dynamics. In turn, rotational dynamics of water molecules, which is dominated by hydrogen bond switches, is significantly impeded in the presence of 1,3-DMU and only weakly by 1,1-DMU and 1-EU. These marked differences can be explained by both excluded volume effects in hydration and self-aggregation, which may be the key to their biotechnological function.
RESUMEN
Ion-protein interactions are important for protein function, yet challenging to rationalize owing to the multitude of possible ion-protein interactions. To explore specific ion effects on protein binding sites, we investigate the interaction of different salts with the zwitterionic peptide triglycine in solution. Dielectric spectroscopy shows that salts affect the peptide's reorientational dynamics, with a more pronounced effect for denaturing cations (Li+ , guanidinium (Gdm+ )) and anions (I- , SCN- ) than for weakly denaturing ones (K+ , Cl- ). The effects of Gdm+ and Li+ were found to be comparable. Molecular dynamics simulations confirm the enhanced binding of Gdm+ and Li+ to triglycine, yet with a different binding geometry: While Li+ predominantly binds to the C-terminal carboxylate group, bidentate binding to the terminus and the nearest amide is particularly important for Gdm+ . This bidentate binding markedly affects peptide conformation, and may help to explain the high denaturation activity of Gdm+ salts.
Asunto(s)
Simulación de Dinámica Molecular/normas , Oligopéptidos/química , Sitios de Unión , Guanidina/químicaRESUMEN
The changes of the local structure in the binary mixture of 1-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6) ionic liquid and acetonitrile are investigated over the entire composition range. Two charge distribution models of the ions are considered: in the first one, the atomic fractional charges of the cations and anions are kept equal with those in the neat ionic liquid, and hence they are independent from the mole fraction of the ionic liquid, while in the second one the charge distribution is scaled up by a mole fraction dependent factor. The sum of these charges converge to +1e and -1e on the cation and anion, respectively, at infinite dilution. All the other interactions and geometry parameters of the ions (i.e., Lennard-Jones, bond stretching, angle bending and dihedral parameters) are identical in the two cases. The effect of the fractional charge distribution on the hydrogen bonding between the counterions themselves and between the ions and solvent molecules, as well as on the stacking interactions between the cations, is analyzed. To this end, two distances, characteristic of the hydrogen bond formed by the donor moiety and its nearest neighbor acceptor, as well as a coordinate system that defines unambiguously the orientation between a reference cation and its nearest neighbor, are introduced. It is shown that, with the variable charge model, the neighboring cation-anion pairs maintain their relative arrangement similar to the neat ionic liquid down to an ionic liquid mole fraction of xIL = 0.10, whereas in the case of the constant charge model such changes occur already at xIL = 0.20. Furthermore, the analysis of the first and the second nearest neighbor distance distributions of an anion around a reference cation indicates that, at this mole fraction range, there are two different preferred arrangements of the anions around the cations. In the first one, similarly to the local structure around a reference cation in the neat ionic liquid, the anion forms a distorted hydrogen bond with the cation, while in the second one the anion is located farther from the cation, forming no hydrogen bond with it. The relative population of these two types of preferred nearest neighbor cation-anion arrangements is found to be sensitive to further decrease of the ionic liquid mole fraction. These findings correlate with experimental results concerning the behavior of many physical chemical properties (e.g., excess volume, excess viscosity, chemical shift, infrared and Raman vibrational mode shifts, diffusion, etc.) that were found to undergo a drastic change in this mole fraction range. Our results show that in this composition range a transition occurs from the situation where the macroscopic physical chemical properties of the system are determined primarily by the cation-anion hydrogen bonding interactions to that where they are determined by the solvation of the cation and the anion by the molecular solvent.
RESUMEN
The hydrogen bonds of the imidazolium-ring H atoms of ionic liquids (ILs), 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amides ([Cnmim][TFSA], n = 2 to 12 where n represents the alkyl chain length), with the O atom of dimethyl sulfoxide (DMSO) have been elucidated using 1H, 13C, and 15N NMR spectroscopy and soft X-ray absorption and emission spectroscopy (XAS and XES). Density functional theory (DFT) calculations have been performed on an isolated DMSO molecule and two cluster models of [Cnmim]+-DMSO by hydrogen bonding to interpret the XES spectra for the [Cnmim][TFSA]-DMSO solutions. The 1H and 13C NMR chemical shifts of the imidazolium ring showed that deshielding of the ring H and C atoms is moderate as the DMSO mole fraction xDMSO increases to â¼0.8; however, it becomes more significant with further increase of xDMSO. This finding suggests that the hydrogen bonds of the three ring H atoms with the DMSO O atoms are saturated in solutions with xDMSO increased to â¼0.8. The 1H and 13C chemical shifts of the alkyl chains revealed that the electron densities of the chain H and C atoms gradually decrease with increasing xDMSO, except for the N1-bound carbon atom C7 of the chain. The 15N NMR chemical shifts showed that the imidazolium-ring N1 atom which is bound to the alkyl chain is shielded with increasing xDMSO in the range from 0 to 0.8 and is then deshielded with further increase of xDMSO. In contrast, the imidazolium ring N3 atom is simply deshielded with increasing xDMSO. Thus, the electron densities of the alkyl chain may be condensed at the C7 and N1 atoms of [Cnmim]+ by the hydrogen bonding of the ring H atoms with DMSO. The hydrogen bonding of DMSO with the ring results in low-energy shifts of the XES peaks of the O K-edge of DMSO. Small-angle neutron scattering experiments showed that [Cnmim][TFSA] and DMSO are homogeneously mixed with each other on the mesoscopic scale. This results from the strong hydrogen bonds of DMSO with the imidazolium-ring H atoms.
RESUMEN
The subtle interplay between ion solvation and association was analyzed in mixtures of imidazolium-based ionic liquids (ILs) with polar aprotic solvents. A site-specific pattern of cation-solvent and cation-anion interactions was disclosed by a careful analysis of the 1 H and 13 Câ NMR chemical shift dependence of the mixture composition. It was established that the less polar but more donating γ-butyrolactone is more prone to establish H-bonds with the imidazolium-ring hydrogen atoms of the IL cations than propylene carbonate, particularly at the H2 site and at high dilutions xIL <0.1. The H2 site was found to be more sensitive to intermolecular interactions compared to H4, 5 in the case of ILs with asymmetric anions like trifluoromethanesulfonate (TfO- ) or bis(trifluoromethylsulfonyl)amide (TFSA- ).
RESUMEN
Mcl-1, which is an anti-apoptotic member of the Bcl-2 protein family, is overexpressed in various cancers and promotes the aberrant survival of tumor cells. To inhibit Mcl-1, and initiate apoptosis, an interaction between BH3-only proteins and Mcl-1 anti-apoptotic protein is necessary. These protein-protein interactions exhibit some selectivity: Mcl-1 binds specifically to Noxa, whereas Bim and Puma bind strongly to all anti-apoptotic proteins. Even if the three-dimensional (3D) structures of several Mcl-1/BH3-only complexes have been solved, the BH3-only binding specificity to Mcl-1 is still not completely understood. In this study, molecular dynamics simulations were used to elucidate the molecular basis of the interactions with Mcl-1. Our results corroborate the importance of four conserved hydrophobic residues and a conserved aspartic acid on BH3-only as a common binding pattern. Furthermore, our results highlight the contribution of the fifth hydrophobic residue in the C-terminal part and a negatively charged patch in the N-terminal of BH3-only peptides as important for their fixation to Mcl-1. We hypothesize that this negatively charged patch will be an Mcl-1 specific binding pattern.
Asunto(s)
Simulación de Dinámica Molecular , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Secuencia de Aminoácidos , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/química , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Proteína Letal Asociada a bcl/metabolismoRESUMEN
The information about the structure of dimethyl sulfoxide (DMSO)-water mixtures at relatively low DMSO mole fractions is an important step in order to understand their cryoprotective properties as well as the solvation process of proteins and amino acids. Classical MD simulations, using the potential model combination that best reproduces the free energy of mixing of these compounds, are used to analyze the local structure of DMSO-water mixtures at DMSO mole fractions below 0.2. Significant changes in the local structure of DMSO are observed around the DMSO mole fraction of 0.1. The array of evidence, based on the cluster and the metric and topological parameters of the Voronoi polyhedra distributions, indicates that these changes are associated with the simultaneous increase of the number of DMSO-water and decrease of water-water hydrogen bonds with increasing DMSO concentration. The inversion between the dominance of these two types of H-bonds occurs around XDMSO = 0.1, above which the DMSO-DMSO interactions also start playing an important role. In other words, below the DMSO mole fraction of 0.1, DMSO molecules are mainly solvated by water molecules, while above it, their solvation shell consists of a mixture of water and DMSO. The trigonal, tetrahedral, and trigonal bipyramidal distributions of water shift to lower corresponding order parameter values indicating the loosening of these orientations. Adding DMSO does not affect the hydrogen bonding between a reference water molecule and its first neighbor hydrogen bonded water molecules, while it increases the bent hydrogen bond geometry involving the second ones. The close-packed local structure of the third, fourth, and fifth water neighbors also is reinforced. In accordance with previous theoretical and experimental data, the hydrogen bonding between water and the first, the second, and the third DMSO neighbors is stronger than that with its corresponding water neighbors. At a given DMSO mole fraction, the behavior of the intensity of the high orientational order parameter values indicates that water molecules are more ordered in the vicinity of the hydrophilic group while their structure is close-packed near the hydrophobic group of DMSO.
RESUMEN
Ionic liquids (ILs) being composed of bulky multiatomic ions reveal a plethora of non-covalent interactions which determine their microscopic structure. In order to establish the main peculiarities of these interactions in an IL-environment, we have performed quantum chemical calculations for a set of representative model molecular clusters. These calculations were coupled with advanced methods of analysis of the electron density distribution, namely, the quantum theory of atoms in molecules (QTAIM) and the non-covalent interaction (NCI; J. Am. Chem. Soc., 2010, 132, 6499) approaches. The former allows for profound quantitative characterization of non-covalent interactions between atoms while the latter gives an overview of spatial extent, delocalization, and relative strength of such interactions. The studied systems consist of 1-butyl-3-methylimidazolium (Bmim(+)) cations and different perfluorinated anions: tetrafluoroborate (BF4(-)), hexafluorophosphate (PF6(-)), trifluoromethanesulfonate (TfO(-)), and bis(trifluoromethanesulfonyl)imide (TFSI(-)). IL ion pairs and ion pair dimers were considered as model structures for the neat ILs and large aggregates. Weak electrostatic hydrogen bonding was found between the anions and the imidazolium ring hydrogen atoms of cations. Weaker but still appreciable hydrogen bonding was also noted for hydrogen atoms adjacent to the imidazolium ring alkyl groups of Bmim(+). The relative strength of the hydrogen bonding is higher in BmimTfO and BmimBF4 ILs than in BmimPF6 and BmimTFSI, whereas BmimTfO and BmimTFSI reveal higher sensitivity of hydrogen bonding at the different hydrogen atoms of the imidazolium ring.
RESUMEN
Mixtures of ionic liquids (ILs) with polar aprotic solvents in different combinations and under different conditions (concentration, temperature etc.) are used widely in electrochemistry. However, little is known about the key intermolecular interactions in such mixtures depending on the nature of the constituents and mixture composition. In order to systematically address the intermolecular interactions, the chemical shift variation of (1)H and (13)C nuclei has been followed in mixtures of imidazolium ILs 1-n-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4), 1-n-butyl-3-methylimidazolium hexafluorophosphate (BmimPF6), 1-n-butyl-3-methylimidazolium trifluoromethanesulfonate (BmimTfO) and 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimTFSI) with molecular solvent acetonitrile (AN) over the entire composition range at 300 K. The concept of relative chemical shift variation is proposed to assess the observed effects on a unified and unbiased scale. We have found that hydrogen bonds between the imidazolium ring hydrogen atoms and electronegative atoms of anions are stronger in BmimBF4 and BmimTfO ILs than those in BmimTFSI and BmimPF6. Hydrogen atom at position 2 of the imidazolium ring is substantially more sensitive to interionic hydrogen bonding than those at positions 4-5 in the case of BmimTfO and BmimTFSI ILs. These hydrogen bonds are disrupted upon dilution in AN due to ion dissociation which is more pronounced at high dilutions. Specific solvation interactions between AN molecules and IL cations are poorly manifested.
RESUMEN
Microscopic interactions of an imidazolium-based ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C2mimTFSI), with dimethyl sulfoxide (DMSO), methanol (MeOH), and acetonitrile (AN) have been analyzed by means of Raman, attenuated total reflectance infrared (ATR-IR), (1)H and (13)C NMR spectroscopy techniques. The magnitude of the red-shift of the C(2)-H vibration mode of the imidazolium ring and the deshielding of the C(2)-H hydrogen and carbon atoms, compared with that of the other atoms of the ring or the anion, indicated a strong interaction between the C(2)-H hydrogen atom and the molecular liquids in the following order; DMSO â« MeOH > AN. This correlates with the order of the electron donicities of these molecular liquids which allows us to suggest a hydrogen bonding character of these interactions. The behavior of S= O vibration of DMSO as a function of the DMSO molar fraction xDMSO also suggested that DMSO molecules are stoichiometrically hydrogen-bonded with the three hydrogen atoms, C(2,4,5)-H, of the ring. In contrast, the hydrogen bonding between MeOH and the C(4,5)-H atoms is much weaker than that in DMSO. AN hardly forms hydrogen bonds with the C(4,5)-H atoms. Instead, AN molecules may interact with the imidazolium ring through the π-π interaction. The interactions between the imidazolium ring and the molecular liquids lead to the loosening of the TFSI anion from the cation; this correlates with both the blue-shift of the S=O stretching vibration of TFSI and the deshielding of the trifluoromethyl carbon atoms with an increase in the molar fraction of the molecular liquid xML. The latter is weak in the MeOH solutions, and may be explained by the possible hydrogen bonding of the MeOH hydroxyl group as an electron-acceptor with the TFSI anion. Furthermore, the organization of MeOH molecules around the ethyl and methyl groups of the cation is discussed in terms of the chemical shift of the hydrogen and carbon atoms in these groups as a function of xML.
RESUMEN
A 'catcher' based on a revolving cylindrical collector is described. The simple and inexpensive device reduces free-jet instabilities inherent to high-viscosity extrusion injection, facilitating delivery of microcrystals for serial diffraction X-ray crystallography.
RESUMEN
The new sensing materials based on the microsized silica gel powder with non-covalently immobilized structurally rigid analogs of 2,6-distyrylpyrydine ((3E,5E)-3,5-dibenzylidene-8-phenyl-1,2,3,5,6,7-hexahydrodicyclopenta[b,e]pyridines) were developed and tested. Most of the investigated compositions demonstrate linear ratiometric fluorescence response on pH in the physiologically important interval (pH 6-9). The compound with the greatest number of protolytic centers within the studied series demonstrated the widest pH sensitivity range, however in this case the analytical signal was the lowest. The prospects for the practical application of the investigated materials in the fiber optics sensing devices were outlined.
Asunto(s)
Colorantes Fluorescentes/química , Piridinas/química , Electrones , Concentración de Iones de Hidrógeno , Dióxido de Silicio/química , Solubilidad , Espectrometría de Fluorescencia , Propiedades de SuperficieRESUMEN
In recent years the interaction of organophosphates and imines, which is at the core of Brønsted acid organocatalysis, has been established to be based on strong ionic hydrogen bonds. Yet, besides the formation of homodimers consisting of two acid molecules and heterodimers consisting of one acid and one base, also multimeric molecular aggregates are formed in solution. These multimeric aggregates consist of one base and several acid molecules. The details of the intermolecular bonding in such aggregates, however, have remained elusive. To characterize composition-dependent bonding and bonding dynamics in these aggregates, we use linear and nonlinear infrared (IR) spectroscopy at varying molar ratios of diphenyl phosphoric acid and quinaldine. We identify the individual aggregate species, giving rise to the structured, strong, and very broad infrared absorptions, which span more than 1000 cm-1. Linear infrared spectra and density functional theory calculations of the proton transfer potential show that doubly ionic intermolecular hydrogen bonds between the acid and the base lead to absorptions which peak at â¼2040 cm-1. The contribution of singly ionic hydrogen bonds between an acid anion and an acid molecule is observed at higher frequencies. As common to such strong hydrogen bonds, ultrafast IR spectroscopy reveals rapid, â¼ 100 fs, dissipation of energy from the proton transfer coordinate. Yet, the full dissipation of the excess energy occurs on a â¼0.8-1.1 ps time scale, which becomes longer when multimers dominate. Our results thus demonstrate the coupling and collectivity of the hydrogen bonds within these complexes, which enable efficient energy transfer.