Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 228: 140-148, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30216828

RESUMEN

The main factors that affect the extraction of metals from spent lithium-ion batteries by acid leaching using H2SO4, and sodium metabisulphite, were evaluated and optimized through a set of experiments, framed by a techno-economic approach. The maximum value of the profit response was obtained with the highest possible values of acid concentration (2.5 M) and time (2 h), a liquid/solid ratio of 5 L/kg, and the lowest possible value of temperature (40 °C). After leaching, the electrodes active material contained in the metals decreased, while it was still significant in the graphite, as observed by scanning electron microscopy-energy dispersive spectrometry and x-ray powder diffraction. Even though the performed economic evaluation was a summarized outline it can be considered suitable to compare different leaching conditions and to determine the possible best combinations of factors that can optimize the profit response.


Asunto(s)
Litio/química , Metales/química , Ácidos Sulfúricos/química , Análisis Costo-Beneficio , Suministros de Energía Eléctrica , Electrodos , Microscopía Electrónica de Rastreo , Reciclaje/métodos , Sulfitos , Temperatura , Difracción de Rayos X
2.
Environ Sci Technol ; 50(9): 4854-62, 2016 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-27019006

RESUMEN

The challenges brought on by the increasing complexity of electronic products, and the criticality of the materials these devices contain, present an opportunity for maximizing the economic and societal benefits derived from recovery and recycling. Small appliances and computer devices (SACD), including mobile phones, contain significant amounts of precious metals including gold and platinum, the present value of which should serve as a key economic driver for many recycling decisions. However, a detailed analysis is required to estimate the economic value that is unrealized by incomplete recovery of these and other materials, and to ascertain how such value could be reinvested to improve recovery processes. We present a dynamic product flow analysis for SACD throughout Portugal, a European Union member, including annual data detailing product sales and industrial-scale preprocessing data for recovery of specific materials from devices. We employ preprocessing facility and metals pricing data to identify losses, and develop an economic framework around the value of recycling including uncertainty. We show that significant economic losses occur during preprocessing (over $70 M USD unrecovered in computers and mobile phones, 2006-2014) due to operations that fail to target high value materials, and characterize preprocessing operations according to material recovery and total costs.


Asunto(s)
Computadores , Reciclaje , Electrónica , Metales , Portugal
3.
Waste Manag ; 87: 78-85, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31109581

RESUMEN

Incomplete recovery of materials in mobile phones results in a significant economic loss. Many studies have focused on improving the situation by characterizing metals within printed circuit boards (PCBs) to identify where losses occur. Our work focuses on the evolving composition of mobile phones and particularly the flow of materials located within components outside of PCBs. In this study we quantify the appreciable economic potential of non-PCB derived metals and provide suggestions for optimization of different preprocessing steps to recover these materials. These opportunities can be categorized as recovering both high value and high volume materials. We therefore recommend that preprocessors pay special attention to precious metals in fine shredding and develop strategies for plastics recycling based on our demand and supply forecasts of postconsumer plastics in phones. We have performed this work based on a case study of Portugal.


Asunto(s)
Teléfono Celular , Residuos Electrónicos , Plásticos , Portugal , Reciclaje
4.
Waste Manag ; 71: 350-361, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29030120

RESUMEN

The hydrometallurgical extraction of metals from spent lithium-ion batteries (LIBs) was investigated. LIBs were first dismantled and a fraction rich in the active material was obtained by physical separation, containing 95% of the initial electrode, 2% of the initial steel and 22% of plastic materials. Several reducers were tested to improve metals dissolution in the leaching step using sulphuric acid. Sodium metabisulphite led to the best results and was studied in more detail. The best concentration of Na2S2O5 was 0.1 M. The metals dissolution increased with acid concentration, however, concentrations higher than 1.25 M are unnecessary. Best results were reached using a stirring speed of 400 min-1. The metals leaching efficiency from the active material (Li, Mn, Ni, Co) increased with the temperature and was above 80% for temperatures higher than 60 °C. The dissolution of metals also rose with the increase in the liquid/solid ratio (L/S), however, extractions above 85% can be reached at L/S as lower as 4.5 L/kg, which is favourable for further purification and recovery operations. About 90% of metals extraction can be achieved after only 0.5 h of leaching. Sodium metabisulphite can be an alternative reducer to increase the leaching of Li, Mn, Co, and Ni from spent LIBs.


Asunto(s)
Residuos Electrónicos , Reciclaje , Suministros de Energía Eléctrica , Litio , Sulfitos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA