Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474470

RESUMEN

The fogging of transparent surfaces-condensation of water vapor in the air to a small liquid surface at specific environmental conditions-scatters incident light, creating a blurry vision. Fogging presents a significant challenge in various industries, adversely affecting numerous applications including plastic packaging, agricultural films, and various optical devices. Superhydrophobic or superhydrophilic coatings are the main strategies used to induce antifogging to minimize light scattering. Here, an innovative approach is introduced to mitigate fogging by modifying the surface properties of polymeric films, focusing on corona-treated polyethylene as a model. Coatings were prepared in two successive steps: the addition of radical co-polymerization of methacryloxypropyltriethoxysilane and N-vinylpyrrolidone followed by the step-growth Stöber polymerization of the formed silane monomer. The polymeric dispersion was spread on oxidized films via a Mayer rod and dried. Scanning and force microscopy, FIB, XPS, and UV-vis spectroscopy revealed a thin coating composed of cross-linked siloxane (Si-O-Si) covalently bonded to surface hydroxyls exposing pyrrolidone groups. Contact angle measurements, hot-fog examination, and durability tests indicated a durable antifogging activity.

2.
Langmuir ; 38(12): 3936-3950, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35286096

RESUMEN

The current work delivers preparation of MXene-based magnetic nanohybrid coating for flexible electronic applications. Herein, we report carbon dot-triggered photopolymerized polynorepinepherene (PNE)-coated MXene and iron oxide hybrid deposited on the cellulose microporous membrane via a vacuum-assisted filtration strategy. The surface morphologies have been monitored by scanning electron microscopy analysis, and the coating thickness was evaluated by the gallium-ion-based focused ion beam method. Coated membranes have been tested against uniaxial tensile stretching and assessed by their fracture edges in order to assure flexibility and mechanical strength. Strain sensors and electromagnetic interference (EMI) shielding have both been tested on the material because of its electrical conductivity. The bending strain sensitivity has been stringent because of their fast 'rupture and reform' percolation network formation on the coated surface. Increased mechanical strength, solvent tolerance, cyclic deformation tolerance, and EMI shielding performance were achieved by decreasing interstitial membrane porosity. Considering a possible application, the membrane also has been tested against simulated static and dynamic water flow conditions that could infer its excellent robustness which also has been confirmed by elemental analysis via ICP-MS. Thus, as of nurturing the works of the literature, it could be believed that the developed material will be an ideal alternative of flexible lightweight cellulose for versatile electronic applications.


Asunto(s)
Carbono , Celulosa , Conductividad Eléctrica , Microscopía Electrónica de Rastreo
3.
Minim Invasive Ther Allied Technol ; 31(7): 1086-1095, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36148547

RESUMEN

INTRODUCTION: In non-resectable tumors, chemotherapy is crucial to improve patient survival. However, it is often accompanied by considerable side effects. Targeted delivery of chemotherapy by coupling with iron oxide superparamagnetic nanoparticles (IONP) could potentially increase efficacy while decreasing adverse systemic side effects. We aimed to evaluate the feasibility of targeting nontoxic, biodegradable-IONP into tumors in-vivo by applying an external magnetic field. MATERIAL AND METHODS: Subcutaneous colon carcinoma tumors were induced in 35 mice. IONP was injected systemically, followed by suturing of a magnet on top of the tumors for 2-24 h. Tumors and livers were excised and stained for iron to explore IONP localization. RESULTS: Iron staining was evident in 43% and 20% of tumors exposed to magnets for 4 h or 24 h, respectively. No iron was present following 2 h exposure, nor in the control group; however, iron stain in the livers indicates most of the IONP were cleared by the liver 24 h later. CONCLUSION: We demonstrated the targeting feasibility of IONP to tumor tissue by an external magnetic field. Our data shows successful targeting; however, with low efficacy following systemic injection of the IONP. As such, a paradigm shift is strongly recommended from systemic to locoregional IONP injection to increase targeting efficacy.


Asunto(s)
Nanopartículas de Magnetita , Neoplasias , Animales , Estudios de Factibilidad , Compuestos Férricos/uso terapéutico , Magnetismo , Ratones , Modelos Animales
4.
Langmuir ; 37(11): 3508-3520, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33705147

RESUMEN

This work presents the facile synthesis of heteroatom-doped fluorescent carbon quantum dots (C-dots), which could serve as an antioxidant. Herein, nitrogen, phosphorous, and sulfur codoped carbon dots (NPSC-dots) have been synthesized by a single-step hydrothermal strategy. Owing to the radical scavenging activity of the NPSC-dots, they were tested against several methods as well as in practical applications. The antioxidant ability of the NPSC-dots was efficiently utilized on plastic films by coating with these NPSC-dots. For the very first time, NPSC-dots were immobilized onto nonpolar plastic films (polypropylene) via photochemical covalent grafting to extend the shelf life of food items or storage without affecting the quality of plastic films. The NPSC-dot-coated PP film with negligible deterioration of transparency was extensively studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), contact angle measurement, and thermogravimetric analysis (TGA). The fluorescent character, antioxidant ability, and durability under different solvent systems of the coated film were examined. Also, the coated films were extensively and rigorously evaluated against simulated drastic environmental conditions to ensure the durability and antifogging application.


Asunto(s)
Carbono , Puntos Cuánticos , Antioxidantes , Nitrógeno , Plásticos , Espectroscopía Infrarroja por Transformada de Fourier
5.
Molecules ; 25(17)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887463

RESUMEN

Risperidone (RSP) is an atypical antipsychotic drug widely used to treat schizophrenia and bipolar disorder. Nanoparticles (NPs) are being developed as in vivo targeted drug delivery systems, which cross the blood-brain barrier and improve pharmacokinetics and drug effectiveness. Here, biodegradable proteinoids were synthesized by thermal step-growth polymerization from the amino acids l-glutamic acid, l-phenylalanine and l-histidine and poly (l-lactic acid). Proteinoid NPs containing RSP were then formed by self-assembly, overcoming the insolubility of the drug in water, followed by PEGylation (poly ethylene glycol (PEG) conjugation to increase the stability of the NPs in the aqueous continuous phase. These NPs are biodegradable owing to their peptide and ester moieties. They were characterized in terms of diameter, size distribution, drug loading, and long-term storage. Behavioral studies on mice found enhanced antipsychotic activity compared to free RSP.


Asunto(s)
Antipsicóticos/farmacología , Sistemas de Liberación de Medicamentos , Nanocápsulas/química , Risperidona/farmacología , Análisis de Varianza , Animales , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular , Supervivencia Celular/efectos de los fármacos , Hidrodinámica , Ratones , Tamaño de la Partícula , Espectroscopía de Protones por Resonancia Magnética , Risperidona/química , Distribución Tisular/efectos de los fármacos
6.
Environ Sci Technol ; 53(15): 9160-9170, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31328506

RESUMEN

Harmful cyanobacterial blooms (HCBs) are becoming a major challenge for the management of both natural and man-made freshwater lakes and reservoirs. Phytoplankton communities are an essential component of aquatic ecosystems, providing the basis for natural food webs as well as important environmental services. HCBs, driven by a combination of environmental pollution and rising global temperatures, destabilize phytoplankton communities with major impacts on aquatic ecology and trophic interactions. Application of currently available algaecides generally results in unselective elimination of phytoplankton species, disrupting water ecology and environmental services provided by beneficial algae. There is thus a need for selective cyanocidal compounds that can eliminate cyanobacteria while preserving algal members of the phytoplankton community. Here, we demonstrate the efficacy of N-halamine derivatized nanoparticles (Cl NPs) in selectively eliminating cyanobacteria, including the universal bloom-forming species Microcystis aeruginosa, while having minimal effect on co-occurring algal species. We further support these results with the use a simple microfluidic platform in combination with advanced live-imaging microscopy to study the effects of Cl NPs on both laboratory cultures and natural populations of cyanobacteria and algae at single cell resolutions. We note that the Cl NPs used in this work were made of polymethacrylamide, a nonbiodegradable polymer that may be unsuitable for use as a cyanocide in open aquatic environments. Nevertheless, the demonstrated selective action of these Cl NPs suggests a potential for developing alternative, biodegradable carriers with similar properties as future cyanocidal agents that will enable selective elimination of HCBs.


Asunto(s)
Cianobacterias , Nanopartículas , Ecosistema , Eutrofización , Floraciones de Algas Nocivas , Lagos , Fitoplancton
7.
J Nanobiotechnology ; 17(1): 3, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30630490

RESUMEN

BACKGROUND: Retinal degeneration diseases affect millions of patients worldwide and lead to incurable vision loss. These diseases are caused by pathologies in the retina and underlying choroid, located in the back of the eye. One of the major challenges in the development of treatments for these blinding diseases is the safe and efficient delivery of therapeutics into the back of the eye. Previous studies demonstrated that narrow size distribution core-shell near infra-red fluorescent iron oxide (IO) nanoparticles (NPs) coated with human serum albumin (HSA, IO/HSA NPs) increase the half-life of conjugated therapeutic factors, suggesting they may be used for sustained release of therapeutics. In the present study, the in vivo tracking by MRI and the long term safety of IO/HSA NPs delivery into the suprachoroid of a rat model of retinal degeneration were assessed. RESULTS: Twenty-five Royal College of Surgeons (RCS) pigmented rats received suprachoroidal injection of 20-nm IO/HSA NPs into the right eye. The left eye was not injected and used as control. Animals were examined by magnetic resonance imaging (MRI), electroretinogram (ERG) and histology up to 30 weeks following injection. IO/HSA NPs were detected in the back part of the rats' eyes up to 30 weeks following injection by MRI, and up to 6 weeks by histology. No significant differences in retinal structure and function were observed between injected and non-injected eyes. There was no significant difference in the weight of IO/HSA NP-injected animals compared to non-injected rats. CONCLUSIONS: MRI could track the nanoparticles in the posterior segment of the injected eyes demonstrating their long-term persistence, and highlighting the possible use of MRI for translational studies in animals and in future clinical studies. Suprachoroidal injection of IO/HSA NPs showed no sign of adverse effects on retinal structure and function in a rat model of retinal degeneration, suggesting that suprachoroidal delivery of IO/HSA NPs is safe and that these NPs may be used in future translational and clinical studies for extended release drug delivery at the back of the eye.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Retina/metabolismo , Albúmina Sérica Humana/química , Animales , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Colorantes Fluorescentes/química , Humanos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/toxicidad , Tamaño de la Partícula , Ratas , Degeneración Retiniana/metabolismo , Propiedades de Superficie , Factores de Tiempo , Distribución Tisular
8.
Soft Matter ; 12(15): 3527-37, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26979521

RESUMEN

The effect of polymer modification on the deformation characteristics and processibility of particle assembly structures is analyzed as a function of particle size and degree of polymerization of surface-tethered chains. A pronounced increase of the fracture toughness (by approximately one order of magnitude) is observed as the degree of polymerization exceeds a threshold value that increases with particle size. The threshold value is interpreted as being related to the transition of tethered chains from stretched-to-relaxed conformation (and the associated entanglement of tethered chains) and agrees with predictions from scaling theory. The increase in toughness is reduced with increasing particle size - this effect is rationalized as a consequence of the decrease of entanglement density with increasing dimension of interstitial (void) space in particle array structures. The increased fracture toughness of particle brush materials (with sufficient degree of polymerization of tethered chains) enables the fabrication of ordered colloidal films and even complex 3D shapes by scalable polymer processing techniques, such as spin coating and micromolding. The results, therefore, suggest new opportunities for the processing of colloidal material systems that could find application in the economical fabrication of functional components or systems compromised of colloidal materials.

9.
J Nanobiotechnology ; 14(1): 56, 2016 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-27388790

RESUMEN

BACKGROUND: Isothiouronium salts are well known in their variety of antimicrobials activities. The use of polymeric biocides, polymers with antimicrobial activities, is expected to enhance the efficacy of some existing antimicrobial agents, thus minimizing the environmental problems accompanying conventional antimicrobials. METHODS: The current manuscript describes the synthesis and characterization of crosslinked polyisothiouronium methylstyrene (PITMS) nanoparticles (NPs) of narrow size distribution by dispersion co-polymerization of the monomer isothiouronium methylstyrene with the crosslinking monomer ethylene glycol dimetacrylate. RESULTS AND DISCUSSION: The effect of total monomer, crosslinker and initiator concentrations on the size and size distribution of the formed NPs was also elucidated. The bactericidal activity of PITMS NPs of 67 ± 8 nm diameter was illustrated for 4 bacterial pathogens: Listeria innocua, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. In order to demonstrate the potential of these PITMS NPs as inhibitor of biofilm formation, polyethylene terephthalate (PET) films were thin-coated with the PITMS NPs. The formed PET/PITMS films reduced the viability of the biofilm of Listeria by 2 orders of magnitude, making the coatings excellent candidates for further development of non-fouling surfaces. In addition, PITMS NP coatings were found to be non-toxic in HaCaT cells. CONCLUSIONS: The high antibacterial activity and effective inhibition of bacterial adsorption indicate the potential of these nanoparticles for development of new types of antibacterial and antibiofilm additives.


Asunto(s)
Antibacterianos/síntesis química , Biopelículas/efectos de los fármacos , Isotiuronio/síntesis química , Metacrilatos/química , Nanopartículas/química , Estirenos/síntesis química , Antibacterianos/farmacología , Biopelículas/crecimiento & desarrollo , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Reactivos de Enlaces Cruzados/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Humanos , Isotiuronio/farmacología , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Listeria/efectos de los fármacos , Listeria/crecimiento & desarrollo , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Tamaño de la Partícula , Tereftalatos Polietilenos/química , Polimerizacion , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Estirenos/farmacología
10.
J Nanobiotechnology ; 14(1): 37, 2016 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-27179923

RESUMEN

BACKGROUND: The ability to direct and manipulate neuronal cells has important potential in therapeutics and neural network studies. An emerging approach for remotely guiding cells is by incorporating magnetic nanoparticles (MNPs) into cells and transferring the cells into magnetic sensitive units. Recent developments offer exciting possibilities of magnetic manipulations of MNPs-loaded cells by external magnetic fields. In the present study, we evaluated and characterized uptake properties for optimal loading of cells by MNPs. We examined the interactions between MNPs of different cores and coatings, with primary neurons and neuron-like cells. RESULTS: We found that uncoated-maghemite iron oxide nanoparticles maximally interact and penetrate into cells with no cytotoxic effect. We observed that the cellular uptake of the MNPs depends on the time of incubation and the concentration of nanoparticles in the medium. The morphology patterns of the neuronal cells were not affected by MNPs uptake and neurons remained electrically active. We theoretically modeled magnetic fluxes and demonstrated experimentally the response of MNP-loaded cells to the magnetic fields affecting cell motility. Furthermore, we successfully directed neurite growth orientation along regeneration. CONCLUSIONS: Applying mechanical forces via magnetic mediators is a useful approach for biomedical applications. We have examined several types of MNPs and studied the uptake behavior optimized for magnetic neuronal manipulations.


Asunto(s)
Compuestos Férricos/farmacocinética , Nanopartículas de Magnetita/análisis , Neuronas/citología , Animales , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Compuestos Férricos/análisis , Compuestos Férricos/uso terapéutico , Compuestos Férricos/toxicidad , Campos Magnéticos , Magnetismo/métodos , Nanopartículas de Magnetita/uso terapéutico , Nanopartículas de Magnetita/toxicidad , Micromanipulación/métodos , Regeneración Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Células PC12 , Ratas
11.
J Nanobiotechnology ; 13: 34, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25947109

RESUMEN

BACKGROUND: Iron oxide (IO) nanoparticles (NPs) of sizes less than 50 nm are considered to be non-toxic, biodegradable and superparamagnetic. We have previously described the generation of IO NPs coated with Human Serum Albumin (HSA). HSA coating onto the IO NPs enables conjugation of the IO/HSA NPs to various biomolecules including proteins. Here we describe the preparation and characterization of narrow size distribution core-shell NIR fluorescent IO/HSA magnetic NPs conjugated covalently to Fibroblast Growth Factor 2 (FGF2) for biomedical applications. We examined the biological activity of the conjugated FGF2 on human bone marrow mesenchymal stem cells (hBM-MSCs). These multipotent cells can differentiate into bone, cartilage, hepatic, endothelial and neuronal cells and are being studied in clinical trials for treatment of various diseases. FGF2 enhances the proliferation of hBM-MSCs and promotes their differentiation toward neuronal, adipogenic and osteogenic lineages in vitro. RESULTS: The NPs were characterized by transmission electron microscopy, dynamic light scattering, ultraviolet-visible spectroscopy and fluorescence spectroscopy. Covalent conjugation of the FGF2 to the IO/HSA NPs significantly stabilized this growth factor against various enzymes and inhibitors existing in serum and in tissue cultures. IO/HSA NPs conjugated to FGF2 were internalized into hBM-MSCs via endocytosis as confirmed by flow cytometry analysis and Prussian Blue staining. Conjugated FGF2 enhanced the proliferation and clonal expansion capacity of hBM-MSCs, as well as their adipogenic and osteogenic differentiation to a higher extent compared with the free growth factor. Free and conjugated FGF2 promoted the expression of neuronal marker Microtubule-Associated Protein 2 (MAP2) to a similar extent, but conjugated FGF2 was more effective than free FGF2 in promoting the expression of astrocyte marker Glial Fibrillary Acidic Protein (GFAP) in these cells. CONCLUSIONS: These results indicate that stabilization of FGF2 by conjugating the IO/HSA NPs can enhance the biological efficacy of FGF2 and its ability to promote hBM-MSC cell proliferation and trilineage differentiation. This new system may benefit future therapeutic use of hBM-MSCs.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/administración & dosificación , Nanopartículas de Magnetita , Células Madre Mesenquimatosas/citología , Adipogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Estabilidad de Medicamentos , Compuestos Férricos/química , Factor 2 de Crecimiento de Fibroblastos/química , Fluorescencia , Humanos , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/química , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Tamaño de la Partícula , Fotoblanqueo , Albúmina Sérica/química , Espectrometría de Fluorescencia
12.
Langmuir ; 30(32): 9850-8, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25089849

RESUMEN

Iron oxide (IO) thin coatings of controlled thickness on SiO2 microspheres of narrow size distribution were prepared by decomposition at 160 °C of triiron dodecacarbonyl onto silica microspheres dispersed in diethylene glycol diethyl ether free of surfactant or stabilizer. The dried washed SiO2/IO core-shell microspheres were annealed at different temperatures and time periods under inert (Ar) or reducing (H2) atmosphere. The effect of temperature on the chemical composition, morphology, crystallinity, and magnetic properties of the IO and the elemental Fe nanoparticles type coatings onto the SiO2 core microspheres has been elucidated. "Medusa-like" SiO2/IO/carbon nanofibers and tubes particles were prepared by CVD of ethylene on the surface of the SiO2/IO microspheres at different temperatures. The morphology change of the grafted carbon nanofibers and tubes as a function of the CVD temperature was also elucidated.

13.
J Nanobiotechnology ; 12: 30, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25113279

RESUMEN

BACKGROUND: The use of near-infrared (NIR) fluorescence imaging techniques has gained great interest for early detection of cancer owing to the negligible absorption and autofluorescence of water and other intrinsic biomolecules in this region. The main aim of the present study is to synthesize and characterize novel NIR fluorescent nanoparticles based on proteinoid and PLLA for early detection of colon tumors. METHODS: The present study describes the synthesis of new proteinoid-PLLA copolymer and the preparation of NIR fluorescent nanoparticles for use in diagnostic detection of colon cancer. These fluorescent nanoparticles were prepared by a self-assembly process in the presence of the NIR dye indocyanine green (ICG), a FDA-approved NIR fluorescent dye. Anti-carcinoembryonic antigen antibody (anti-CEA), a specific tumor targeting ligand, was covalently conjugated to the P(EF-PLLA) nanoparticles through the surface carboxylate groups using the carbodiimide activation method. RESULTS AND DISCUSSION: The P(EF-PLLA) nanoparticles are stable in different conditions, no leakage of the encapsulated dye into PBS containing 4% HSA was detected. The encapsulation of the NIR fluorescent dye within the P(EF-PLLA) nanoparticles improves significantly the photostability of the dye. The fluorescent nanoparticles are non-toxic, and the biodistribution study in a mouse model showed they evacuate from the body over 24 h. Specific colon tumor detection in a chicken embryo model and a mouse model was demonstrated for anti-CEA-conjugated NIR fluorescent P(EF-PLLA) nanoparticles. CONCLUSIONS: The results of this study suggest a significant advantage of NIR fluorescence imaging using NIR fluorescent P(EF-PLLA) nanoparticles over colonoscopy. In future work we plan to broaden this study by encapsulating cancer drugs such as paclitaxel and/or doxorubicin, within these biodegradable NIR fluorescent P(EF-PLLA) nanoparticles, for both detection and therapy of colon cancer.


Asunto(s)
Neoplasias del Colon/diagnóstico , Colorantes Fluorescentes , Verde de Indocianina , Ácido Láctico , Nanopartículas , Imagen Óptica/métodos , Polímeros , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Antígeno Carcinoembrionario/metabolismo , Línea Celular Tumoral , Embrión de Pollo , Neoplasias del Colon/metabolismo , Colorantes Fluorescentes/química , Humanos , Verde de Indocianina/química , Ácido Láctico/química , Masculino , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Poliésteres , Polímeros/química , Distribución Tisular
14.
Langmuir ; 29(21): 6452-9, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23668752

RESUMEN

The propensity of particle brush materials to form long-ranged ordered assembly structures is shown to sensitively depend on the brush architecture (i.e., the particle radius as well as molecular weight and grafting density of surface-bound chains). In the limit of stretched chain conformations of surface-grafted chains the formation of regular particle array structures is observed and interpreted as a consequence of hard-sphere-type interactions between polymer-grafted particles. As the degree of polymerization of surface-grafted chains increases beyond a threshold value, a reduction of the structural regularity is observed that is rationalized with the increased volume occupied by relaxed polymer segments. The capacity of polymer grafts to increase or decrease order in particle brush assembly structures is interpreted on the basis of a mean-field scaling model, and "design criteria" are developed to help guide the future synthesis of colloidal systems that are capable of forming mechanically robust yet ordered assembly structures.


Asunto(s)
Reactivos de Enlaces Cruzados/síntesis química , Compuestos Orgánicos de Oro/síntesis química , Polímeros/síntesis química , Compuestos de Sulfhidrilo/química , Reactivos de Enlaces Cruzados/química , Estructura Molecular , Compuestos Orgánicos de Oro/química , Tamaño de la Partícula , Polímeros/química , Teoría Cuántica , Propiedades de Superficie
15.
J Nanobiotechnology ; 11: 32, 2013 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-24059692

RESUMEN

BACKGROUND: Tau dysfunction is believed to be the primary cause of neurodegenerative disorders referred to as tauopathies, including Alzheimer's disease, Pick's disease, frontotemporal dementia and Parkinsonism. The role of microglial cells in the pathogenesis of tauopathies is still unclear. The activation of microglial cells has been correlated with neuroprotective effects through the release of neurotrophic factors and through clearance of cell debris and phagocytosis of cells with intracellular inclusions. In contrast, microglial activation has also been linked with chronic neuroinflammation contributing to the development of neurodegenerative diseases such as tauopathies. Microglial activation has been recently reported to precede tangle formation and the attenuation of tau pathology occurs after immunosuppression of transgenic mice. METHODS: Here we report the specific inhibition of microglial cells in rTg4510 tau-mutant mice by using fibrin γ377-395 peptide conjugated to iron oxide (γ-Fe2O3) nanoparticles of 21 ± 3.5 nm diameter. RESULTS: Stabilization of the peptide by its covalent conjugation to the γ-Fe2O3 nanoparticles significantly decreased the number of the microglial cells compared to the same concentration of the free peptide. The specific microglial inhibition induces different effects on tau pathology in an age dependent manner. The reduction of activation of microglial cells at an early age increases the number of neurons with hyperphosphorylated tau in transgenic mice. In contrast, reduction of activation of microglial cells reduced the severity of the tau pathology in older mice. The number of neurons with hyperphosphorylated tau and the number of neurons with tangles are reduced than those in animals not receiving the fibrin γ377-395 peptide-nanoparticle conjugate. CONCLUSIONS: These results demonstrate a differential effect of microglial activity on tau pathology using the fibrin γ377-395 peptide-nanoparticle conjugate, depending on age and/or stage of the neuropathological accumulation and aggregation.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Compuestos Férricos/química , Microglía/efectos de los fármacos , Nanopartículas/química , Péptidos/farmacología , Factores de Edad , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Recuento de Células , Fibrina/química , Humanos , Proteínas Inmovilizadas , Inyecciones Intraventriculares , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Tamaño de la Partícula , Péptidos/síntesis química , Fosforilación/efectos de los fármacos , Índice de Severidad de la Enfermedad , Factores de Tiempo , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Pharmaceutics ; 15(2)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36840008

RESUMEN

Novel nanomaterials are of interest in biology, medicine, and imaging applications. Multimodal fluorescent-magnetic nanoparticles demand special attention because they have the potential to be employed as diagnostic and medication-delivery tools, which, in turn, might make it easier to diagnose and treat cancer, as well as a wide variety of other disorders. The most recent advancements in the development of magneto-fluorescent nanocomposites and their applications in the biomedical field are the primary focus of this review. We describe the most current developments in synthetic methodologies and methods for the fabrication of magneto-fluorescent nanocomposites. The primary applications of multimodal magneto-fluorescent nanoparticles in biomedicine, including biological imaging, cancer treatment, and drug administration, are covered in this article, and an overview of the future possibilities for these technologies is provided.

17.
Gels ; 9(11)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37998985

RESUMEN

Hydrogels have gained significant popularity in agricultural applications in terms of minimizing waste and mitigating the negative environmental impact of agrochemicals. This review specifically examines the utilization of environmentally friendly, shapable hydrogels composed of polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) in various casings for crop protection against different pests, fertilizing, and watering. To activate their effectiveness, PVA/PVP hydrogels were loaded with both hydrophilic and hydrophobic environmentally friendly pesticides, namely hydrogen peroxide (HP), the essential oil thymol, and urea as a fertilizer, either separately or in combination. This review covers various physical and chemical approaches used for loading, shaping, and controlling the release profiles of pesticides and fertilizers. Additionally, it explores the evaluation of the chemical composition, structure, classification, rheology, and morphology of the hydrogels as well as their impact on the thermal stability of the encapsulated pesticides and fertilizer, followed by biological tests. These hydrogels significantly contribute to the stabilization and controlled release of essential nutrients and biocides for plants, while maintaining excellent biocidal and fertilizing properties as well as sustainability characteristics. By shedding light on the latest insights into the concepts, applications, and results of these hydrogels, this review demonstrates their immense potential for widespread future use in agriculture.

18.
ACS Omega ; 8(12): 11406-11413, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008134

RESUMEN

In many industrial settings, films of polymers such as polypropylene (PP) and polyethylene terephthalate (PET) require surface treatment due to poor wettability and low surface energy. Here, a simple process is presented to prepare durable thin coatings composed of polystyrene (PS) core, PS/SiO2 core-shell, and hollow SiO2 micro/nanoparticles onto PP and PET films as a platform for various potential applications. Corona-treated films were coated with a monolayer of PS microparticles by in situ dispersion polymerization of styrene in ethanol/2-methoxy ethanol with polyvinylpyrrolidone as stabilizer. A similar process on untreated polymeric films did not yield a coating. PS/SiO2 core-shell coated microparticles were produced by in situ polymerization of Si(OEt)4 in ethanol/water onto a PS-coated film, creating a raspberry-like morphology with a hierarchical structure. Hollow porous SiO2-coated microparticles onto a PP/PET film were formed by in situ dissolution of the PS core of the coated PS/SiO2 particles with acetone. The coated films were characterized by E-SEM, FTIR/ATR, and AFM. These coatings may be used as a platform for various applications, e.g. magnetic coatings onto the core PS, superhydrophobic coatings onto the core-shell PS/SiO2, and solidification of oil liquids within the hollow porous SiO2 coating.

19.
Micromachines (Basel) ; 14(12)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38138344

RESUMEN

The emergence of magnetic polymer composites has had a transformative impact on the field of soft robotics. This overview will examine the various methods by which innovative materials can be synthesized and utilized. The advancement of soft robotic systems has been significantly enhanced by the utilization of magnetic polymer composites, which amalgamate the pliability of polymers with the reactivity of magnetic materials. This study extensively examines the production methodologies involved in dispersing magnetic particles within polymer matrices and controlling their spatial distribution. The objective is to gain insights into the strategies required to attain the desired mechanical and magnetic properties. Additionally, this study delves into the potential applications of these composites in the field of soft robotics, encompassing various devices such as soft actuators, grippers, and wearable gadgets. The study emphasizes the transformative capabilities of magnetic polymer composites, which offer a novel framework for the advancement of biocompatible, versatile soft robotic systems that utilize magnetic actuation.

20.
J Funct Biomater ; 14(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37233380

RESUMEN

In March 2020, the World Health Organization announced a pandemic attributed to SARS-CoV-2, a novel beta-coronavirus, which spread widely from China. As a result, the need for antiviral surfaces has increased significantly. Here, the preparation and characterization of new antiviral coatings on polycarbonate (PC) for controlled release of activated chlorine (Cl+) and thymol separately and combined are described. Thin coatings were prepared by polymerization of 1-[3-(trimethoxysilyl)propyl] urea (TMSPU) in ethanol/water basic solution by modified Stöber polymerization, followed by spreading the formed dispersion onto surface-oxidized PC film using a Mayer rod with appropriate thickness. Activated Cl-releasing coating was prepared by chlorination of the PC/SiO2-urea film with NaOCl through the urea amide groups to form a Cl-amine derivatized coating. Thymol releasing coating was prepared by linking thymol to TMSPU or its polymer via hydrogen bonds between thymol hydroxyl and urea amide groups. The activity towards T4 bacteriophage and canine coronavirus (CCV) was measured. PC/SiO2-urea-thymol enhanced bacteriophage persistence, while PC/SiO2-urea-Cl reduced its amount by 84%. Temperature-dependent release is presented. Surprisingly, the combination of thymol and chlorine had an improved antiviral activity, reducing the amount of both viruses by four orders of magnitude, indicating synergistic activity. For CCV, coating with only thymol was inactive, while SiO2-urea-Cl reduced it below a detectable level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA