Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(8): 5118-5127, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38363821

RESUMEN

Using functional proteins for therapeutic purposes due to their high selectivity and/or catalytic properties can enable the control of various cellular processes; however, the transport of active proteins inside living cells remains a major challenge. In contrast, intracellular delivery of nucleic acids has become a routine method for a number of applications in gene therapy, genome editing, or immunization. Here we report a functionalizable platform constituting of DNA-protein nanogel carriers cross-linked through streptavidin-biotin or streptactin-biotin interactions and demonstrate its applicability for intracellular delivery of active proteins. We show that the nanogels can be loaded with proteins bearing either biotin, streptavidin, or strep-tag, and the resulting functionalized nanogels can be delivered into living cells after complexation with cationic lipid vectors. We use this approach for delivery of alkaline phosphatase enzyme, which is shown to keep its catalytic activity after internalization by mouse melanoma B16 cells, as demonstrated by the DDAO-phosphate assay. The resulting functionalized nanogels have dimensions on the order of 100 nm, contain around 100 enzyme molecules, and are shown to be transfectable at low lipid concentrations (charge ratio R± = 0.75). This ensures the low toxicity of our system, which in combination with high local enzyme concentration (∼100 µM) underlines potential interest of this nanoplatform for biomedical applications.


Asunto(s)
Biotina , Polietilenglicoles , Animales , Ratones , Nanogeles , Estreptavidina , Proteínas , ADN/metabolismo , Lípidos , Portadores de Fármacos
2.
Biomacromolecules ; 22(8): 3431-3439, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34260203

RESUMEN

Hybrid DNA-protein nanogels represent potential protein vectors and enzymatic nanoreactors for modern biotechnology. Here, we describe a new, easy, and robust method for preparation of tunable DNA-protein nanogels with controllable size and density. For this purpose, polymerase chain reaction is used to prepare highly biotinylated DNA as a soft biopolymeric backbone, which can be efficiently cross-linked via streptavidin-biotin binding. This approach enables us to control both the density and size of the resulting nanogels not only by adjusting the amount of the cross-linking streptavidin but also by using different rates of DNA biotinylation. This gives DNA-streptavidin nanogels with the size ranging from 80 nm, for the most compact state, to up to 200 nm. Furthermore, using streptavidin-enzyme conjugates allows the straightforward one-pot incorporation of enzymes during the preparation of the nanogels. Monoenzymatic and multienzymatic nanogels have been obtained in this manner, and their catalytic activities have been characterized. All tested enzymes (alkaline phosphatase (AP), horseradish peroxidase (HRP), and ß-galactosidase (ßGal)), incorporated individually or in a coupled manner (glucose oxidase (GOx)-HRP cascade), were shown to remain functional. The activities of AP and ßGal were unchanged while that of HRP was slightly improved inside the nanogels. We demonstrate that, for HRP, it is not the DNA-to-enzyme ratio but the physical density of the functionalized DNA nanogels that is responsible for the improvement of its enzymatic activity.


Asunto(s)
ADN , Glucosa Oxidasa , Peroxidasa de Rábano Silvestre , Nanogeles , Estreptavidina
3.
Angew Chem Int Ed Engl ; 60(28): 15214-15219, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33675576

RESUMEN

We report that user-defined DNA nanostructures, such as two-dimensional (2D) origamis and nanogrids, undergo a rapid higher-order folding transition, referred to as supra-folding, into three-dimensional (3D) compact structures (origamis) or well-defined µm-long ribbons (nanogrids), when they adsorb on a soft cationic substrate prepared by layer-by-layer deposition of polyelectrolytes. Once supra-folded, origamis can be switched back on the surface into their 2D original shape through addition of heparin, a highly charged anionic polyelectrolyte known as an efficient competitor of DNA-polyelectrolyte complexation. Orthogonal to DNA base-pairing principles, this reversible structural reconfiguration is also versatile; we show in particular that 1) it is compatible with various origami shapes, 2) it perfectly preserves fine structural details as well as site-specific functionality, and 3) it can be applied to dynamically address the spatial distribution of origami-tethered proteins.

4.
Sci Rep ; 12(1): 9536, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681077

RESUMEN

Mosquito saliva facilitates blood feeding through the anti-haemostatic, anti-inflammatory and immunomodulatory properties of its proteins. However, the potential contribution of non-coding RNAs to host manipulation is still poorly understood. We analysed small RNAs from Aedes aegypti saliva and salivary glands and show here that chikungunya virus-infection triggers both the siRNA and piRNA antiviral pathways with limited effects on miRNA expression profiles. Saliva appears enriched in specific miRNA subsets and its miRNA content is well conserved among mosquitoes and ticks, clearly pointing to a non-random sorting and occurrence. Finally, we provide evidence that miRNAs from Ae. aegypti saliva may target human immune and inflammatory pathways, as indicated by prediction analysis and searching for experimentally validated targets of identical human miRNAs. Overall, we believe these observations convincingly support a scenario where both proteins and miRNAs from mosquito saliva are injected into vertebrates during blood feeding and contribute to the complex vector-host-pathogen interactions.


Asunto(s)
Aedes , Virus Chikungunya , MicroARNs , Aedes/genética , Aedes/virología , Animales , Fiebre Chikungunya , Humanos , MicroARNs/genética , Mosquitos Vectores/genética , Mosquitos Vectores/virología , ARN Interferente Pequeño/genética , Saliva , Glándulas Salivales/metabolismo
5.
Sci Rep ; 9(1): 17852, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780744

RESUMEN

Arboviral diseases such as chikungunya, dengue, and Zika viruses have been threatening the European countries since the introduction in 1979 of the major vector Aedes albopictus. In 2017, more than three hundred of CHIKV autochthonous cases were reported in Italy, highlighting the urgent need for a risk assessment of arboviral diseases in European countries. In this study, the vector competence for three major arboviruses were analyzed in eight Ae. albopictus populations from Europe. Here we show that Southern European Ae. albopictus were susceptible to CHIKV, DENV-1 and ZIKV with the highest vector competence for CHIKV. Based on vector competence data and vector distribution, a prediction risk map for CHIKV was generated stressing the fear of CHIKV and to a lesser extent, of other arboviruses for Europe, calling us for new public health strategies.


Asunto(s)
Aedes/virología , Fiebre Chikungunya/transmisión , Dengue/transmisión , Mosquitos Vectores/virología , Infección por el Virus Zika/transmisión , Animales , Virus Chikungunya/patogenicidad , Virus del Dengue/patogenicidad , Europa (Continente) , Humanos , Virus Zika/patogenicidad
6.
Parasit Vectors ; 11(Suppl 2): 647, 2018 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-30583734

RESUMEN

BACKGROUND: Global concern over the rapid expansion of the Asian tiger mosquito, Aedes albopictus, and its vector competence has highlighted an urgent need to improve currently available population control methods, like the Sterile Insect Technique. Knowledge of the sex determination cascade is a prerequisite for the development of early-stage sexing systems. To this end, we have characterised the putative sex determination gene, Nix, in this species. In Aedes species the chromosome complement consists of three pairs of chromosomes. The sex determination alleles are linked to the smallest homomorphic chromosome. RESULTS: We identified the male-specific chromosome 1 of Ae. albopictus that carries the putative male-determining gene Nix. We have also characterised the complete genomic sequence of the Nix gene which is composed of two exons and a short intron. The gene displays different levels of intron retention during development. Comparison of DNA sequences covering most of the Nix gene from individuals across the species range revealed no polymorphism. CONCLUSIONS: Our characterisation of the Nix gene in Ae. albopictus represents an initial step in the analysis of the sex determination cascade in this species. We found evidence of intron retention (IR) in Nix. IR might play a role in regulating the expression of Nix during development. Our results provide the basis for the development of new genetic control strategies.


Asunto(s)
Aedes/genética , Cromosomas de Insectos/genética , Proteínas de Insectos/genética , Mosquitos Vectores/genética , Procesos de Determinación del Sexo , Aedes/fisiología , Alelos , Animales , Exones/genética , Femenino , Sitios Genéticos , Intrones/genética , Masculino , Mosquitos Vectores/fisiología , Cromosomas Sexuales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA