Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 101(1): 205-214, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32623714

RESUMEN

BACKGROUND: The beneficial rhizobacterium, Pseudomonas fluorescens N 21.4, and its metabolic elicitors were inoculated in commercial cultivars of blackberry plants (Rubus cv. Loch Ness). Phenolic compounds present in red and black fruit and the expression of structural marker genes of the phenylpropanoid pathway during fruit ripening were studied. RESULTS: An inverse relationship between gene expression and accumulation of metabolites was seen, except for the RuDFR gene, which had a direct correlation with cyanidin 3-O-glucoside synthesis, increasing its content 1.3 times when RuDFR was overexpressed in the red fruit of plants inoculated with the metabolic elicitors of P. fluorescens N 21.4, compared with red fruit of plants inoculated with N 21.4. The RuCHS gene also had a fundamental role in the accumulation of metabolites. Both rhizobacterium and metabolic elicitors triggered the flavonoid metabolism, enhancing the catechin and epicatechin content between 1.1 and 1.6 times in the case of red fruit and between 1.1 and 1.8 times in the case of black fruit. Both treatments also boosted the anthocyanin, quercetin, and kaempferol derivative content, highlighting the effects of metabolic elicitors in red fruit and the effects of live rhizobacterium in black fruit. CONCLUSION: The metabolic elicitors' capacity to modulate gene expression and to increase secondary metabolites content was demonstrated. This work therefore suggests that they are effective, affordable, easily manageable, and ecofriendly plant inoculants that complement, or are alternatives to, beneficial rhizobacteria. © 2020 Society of Chemical Industry.


Asunto(s)
Flavonoides/química , Frutas/química , Frutas/metabolismo , Pseudomonas fluorescens/fisiología , Rubus/microbiología , Producción de Cultivos , Flavonoides/metabolismo , Frutas/crecimiento & desarrollo , Frutas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rubus/química , Rubus/crecimiento & desarrollo , Rubus/metabolismo , Metabolismo Secundario
2.
Plants (Basel) ; 9(8)2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32806693

RESUMEN

In this work, the metabolic elicitors extracted from the beneficial rhizobacterium Pseudomonas fluorescens N 21.4 were sequentially fragmented by vacuum liquid chromatography to isolate, purify and identify the compounds responsible for the extraordinary capacities of this strain to induce systemic resistance and to elicit secondary defensive metabolism in diverse plant species. To check if the fractions sequentially obtained were able to increase the synthesis of isoflavones and if, therefore, they still maintained the eliciting capacity of the live strain, rapid and controlled experiments were done with soybean seeds. The optimal action concentration of the fractions was established and all of them elicited isoflavone secondary metabolism-the fractions that had been extracted with n-hexane being more effective. The purest fraction was the one with the highest eliciting capacity and was also tested in Arabidopsis thaliana seedlings to induce systemic resistance against the pathogen Pseudomonas syringae pv. tomato DC 3000. This fraction was then analyzed by UHPLC/ESI-QTOF-MS, and an alkaloid, two amino lipids, three arylalkylamines and a terpenoid were tentatively identified. These identified compounds could be part of commercial plant inoculants of biological and sustainable origin to be applied in crops, due to their potential to enhance the plant immune response and since many of them have putative antibiotic and/or antifungal potential.

3.
Plants (Basel) ; 9(12)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302428

RESUMEN

The use of beneficial rhizobacteria (bioeffectors) and their derived metabolic elicitors are efficient biotechnological alternatives in plant immune system elicitation. This work aimed to check the ability of 25 bacterial strains isolated from the rhizosphere of Nicotiana glauca, and selected for their biochemical traits from a group of 175, to trigger the innate immune system of Arabidopsis thaliana seedlings against the pathogen Pseudomonas syringae pv. tomato DC3000. The five strains more effective in preventing pathogen infection were used to elucidate signal transduction pathways involved in the plant immune response by studying the differential expression of Salicylic acid and Jasmonic acid/Ethylene pathway marker genes. Some strains stimulated both pathways, while others stimulated either one or the other. The metabolic elicitors of two strains, chosen for the differential expression results of the genes studied, were extracted using n-hexane, ethyl acetate, and n-butanol, and their capacity to mimic bacterial effect to trigger the plant immune system was studied. N-hexane and ethyl acetate were the most effective fractions against the pathogen in both strains, achieving similar protection rates although gene expression responses were different from that obtained by the bacteria. These results open an amount of biotechnological possibilities to develop biological products for agriculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA