Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 88, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943017

RESUMEN

Plastic pollution poses a worldwide environmental challenge, affecting wildlife and human health. Assessing the biodegradation capabilities of natural microbiomes in environments contaminated with microplastics is crucial for mitigating the effects of plastic pollution. In this work, we evaluated the potential of landfill leachate (LL) and estuarine sediments (ES) to biodegrade polyethylene (PE), polyethylene terephthalate (PET), and polycaprolactone (PCL), under aerobic, anaerobic, thermophilic, and mesophilic conditions. PCL underwent extensive aerobic biodegradation with LL (99 ± 7%) and ES (78 ± 3%) within 50-60 days. Under anaerobic conditions, LL degraded 87 ± 19% of PCL in 60 days, whereas ES showed minimal biodegradation (3 ± 0.3%). PE and PET showed no notable degradation. Metataxonomics results (16S rRNA sequencing) revealed the presence of highly abundant thermophilic microorganisms assigned to Coprothermobacter sp. (6.8% and 28% relative abundance in anaerobic and aerobic incubations, respectively). Coprothermobacter spp. contain genes encoding two enzymes, an esterase and a thermostable monoacylglycerol lipase, that can potentially catalyze PCL hydrolysis. These results suggest that Coprothermobacter sp. may be pivotal in landfill leachate microbiomes for thermophilic PCL biodegradation across varying conditions. The anaerobic microbial community was dominated by hydrogenotrophic methanogens assigned to Methanothermobacter sp. (21%), pointing at possible syntrophic interactions with Coprothermobacter sp. (a H2-producer) during PCL biodegradation. In the aerobic experiments, fungi dominated the eukaryotic microbial community (e.g., Exophiala (41%), Penicillium (17%), and Mucor (18%)), suggesting that aerobic PCL biodegradation by LL involves collaboration between fungi and bacteria. Our findings bring insights on the microbial communities and microbial interactions mediating plastic biodegradation, offering valuable perspectives for plastic pollution mitigation.


Asunto(s)
Bacterias , Biodegradación Ambiental , Microbiota , Microplásticos , Instalaciones de Eliminación de Residuos , Microplásticos/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Contaminantes Químicos del Agua/metabolismo , Poliésteres/metabolismo , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Estuarios , Polietileno/metabolismo , Tereftalatos Polietilenos/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 192, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305902

RESUMEN

Micro-aeration was shown to improve anaerobic digestion (AD) processes, although oxygen is known to inhibit obligate anaerobes, such as syntrophic communities of bacteria and methanogens. The effect of micro-aeration on the activity and microbial interaction in syntrophic communities, as well as on the potential establishment of synergetic relationships with facultative anaerobic bacteria (FAB) or aerobic bacteria (AB), was investigated. Anaerobic sludge was incubated with ethanol and increasing oxygen concentrations (0-5% in the headspace). Assays with acetate or H2/CO2 (direct substrates for methanogens) were also performed. When compared with the controls (0% O2), oxygen significantly decreased substrate consumption and initial methane production rate (MPR) from acetate or H2/CO2. At 0.5% O2, MPR from these substrates was inhibited 30-40%, and close to 100% at 5% O2. With ethanol, significant inhibition (>36%) was only observed for oxygen concentrations higher than 2.5%. Oxygen was consumed in the assays, pointing to the stimulation of AB/FAB by ethanol, which helped to protect the syntrophic consortia under micro-aerobic conditions. This highlights the importance of AB/FAB in maintaining functional and resilient syntrophic communities, which is relevant for real AD systems (in which vestigial O2 amounts are frequently present), as well as for AD systems using micro-aeration as a process strategy. KEY POINTS: •Micro-aeration impacts syntrophic communities of bacteria and methanogens. •Oxygen stimulates AB/FAB, maintaining functional and resilient consortia. •Micro-aeration studies are critical for systems using micro-aeration as a process strategy.


Asunto(s)
Euryarchaeota , Aguas del Alcantarillado , Anaerobiosis , Aguas del Alcantarillado/microbiología , Reactores Biológicos , Dióxido de Carbono , Metano , Bacterias , Acetatos , Oxígeno , Etanol
3.
Genet Mol Biol ; 46(1 Suppl 1): e20220153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36512713

RESUMEN

Ascorbate peroxidases (APXs) are heme peroxidases involved in the control of hydrogen peroxide levels and signal transduction pathways related to development and stress responses. Here, a total of 238 APX, 30 APX-related (APX-R), and 34 APX-like (APX-L) genes were identified from 24 species from the Poaceae family. Phylogenetic analysis of APX indicated five distinct clades, equivalent to cytosolic (cAPX), peroxisomal (pAPX), mitochondrial (mitAPX), stromal (sAPX), and thylakoidal (tAPX) isoforms. Duplication events contributed to the expansion of this family and the divergence times. Different from other APX isoforms, the emergence of Poaceae mitAPXs occurred independently after eudicot and monocot divergence. Our results showed that the constitutive silencing of mitAPX genes is not viable in rice plants, suggesting that these isoforms are essential for rice regeneration or development. We also obtained rice plants silenced individually to sAPX isoforms, demonstrating that, different to plants double silenced to both sAPX and tAPX or single silenced to tAPX previously obtained, these plants do not show changes in the total APX activity and hydrogen peroxide content in the shoot. Among rice plants silenced to different isoforms, plants silenced to cAPX showed a higher decrease in total APX activity and an increase in hydrogen peroxide levels. These results suggest that the cAPXs are the main isoforms responsible for regulating hydrogen peroxide levels in the cell, whereas in the chloroplast, this role is provided mainly by the tAPX isoform. In addition to broadening our understanding of the core components of the antioxidant defense in Poaceae species, the present study also provides a platform for their functional characterization.

4.
Funct Integr Genomics ; 21(1): 73-99, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33404914

RESUMEN

Lignin is the main component of secondary cell walls and is essential for plant development and defense. However, lignin is recognized as a major recalcitrant factor for efficiency of industrial biomass processing. Genes involved in general phenylpropanoid and monolignol-specific metabolism in sugarcane have been previously analyzed at the transcriptomic level. Nevertheless, the number of genes identified in this species is still very low. The recently released sugarcane genome sequence has allowed the genome-wide characterization of the 11 gene families involved in the monolignol biosynthesis branch of the phenylpropanoid pathway. After an exhaustive analysis of sugarcane genomes, 438 haplotypes derived from 175 candidate genes from Saccharum spontaneum and 144 from Saccharum hybrid R570 were identified as associated with this biosynthetic route. The phylogenetic analyses, combined with the search for protein conserved residues involved in the catalytic activity of the encoded enzymes, were employed to identify the family members potentially involved in developmental lignification. Accordingly, 15 candidates were identified as bona fide lignin biosynthesis genes: PTAL1, PAL2, C4H4, 4CL1, HCT1, HCT2, C3'H1, C3'H2, CCoAOMT1, COMT1, F5H1, CCR1, CCR2, CAD2, and CAD7. For this core set of lignin biosynthetic genes, we searched for the chromosomal location, the gene expression pattern, the promoter cis-acting elements, and microRNA targets. Altogether, our results present a comprehensive characterization of sugarcane general phenylpropanoid and monolignol-specific genes, providing the basis for further functional studies focusing on lignin biosynthesis manipulation and biotechnological strategies to improve sugarcane biomass utilization.


Asunto(s)
Genes de Plantas , Lignina/biosíntesis , Saccharum/genética , Haplotipos , Lignina/genética , Fenilpropionatos/metabolismo , Filogenia , Polimorfismo Genético , Saccharum/clasificación , Saccharum/metabolismo
5.
Nature ; 520(7549): 679-82, 2015 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-25707794

RESUMEN

Plants and plant pathogens are subject to continuous co-evolutionary pressure for dominance, and the outcomes of these interactions can substantially impact agriculture and food security. In virus-plant interactions, one of the major mechanisms for plant antiviral immunity relies on RNA silencing, which is often suppressed by co-evolving virus suppressors, thus enhancing viral pathogenicity in susceptible hosts. In addition, plants use the nucleotide-binding and leucine-rich repeat (NB-LRR) domain-containing resistance proteins, which recognize viral effectors to activate effector-triggered immunity in a defence mechanism similar to that employed in non-viral infections. Unlike most eukaryotic organisms, plants are not known to activate mechanisms of host global translation suppression to fight viruses. Here we demonstrate in Arabidopsis that the constitutive activation of NIK1, a leucine-rich repeat receptor-like kinase (LRR-RLK) identified as a virulence target of the begomovirus nuclear shuttle protein (NSP), leads to global translation suppression and translocation of the downstream component RPL10 to the nucleus, where it interacts with a newly identified MYB-like protein, L10-INTERACTING MYB DOMAIN-CONTAINING PROTEIN (LIMYB), to downregulate translational machinery genes fully. LIMYB overexpression represses ribosomal protein genes at the transcriptional level, resulting in protein synthesis inhibition, decreased viral messenger RNA association with polysome fractions and enhanced tolerance to begomovirus. By contrast, the loss of LIMYB function releases the repression of translation-related genes and increases susceptibility to virus infection. Therefore, LIMYB links immune receptor LRR-RLK activation to global translation suppression as an antiviral immunity strategy in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/virología , Begomovirus/inmunología , Inmunidad Innata , Inmunidad de la Planta , Biosíntesis de Proteínas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Tolerancia Inmunológica , Unión Proteica , Biosíntesis de Proteínas/genética , Proteína Ribosómica L10 , Proteínas Ribosómicas/metabolismo , Factores de Transcripción/metabolismo
6.
Mol Genet Genomics ; 295(3): 717-739, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32124034

RESUMEN

The phenylpropanoid pathway is an important route of secondary metabolism involved in the synthesis of different phenolic compounds such as phenylpropenes, anthocyanins, stilbenoids, flavonoids, and monolignols. The flux toward monolignol biosynthesis through the phenylpropanoid pathway is controlled by specific genes from at least ten families. Lignin polymer is one of the major components of the plant cell wall and is mainly responsible for recalcitrance to saccharification in ethanol production from lignocellulosic biomass. Here, we identified and characterized sugarcane candidate genes from the general phenylpropanoid and monolignol-specific metabolism through a search of the sugarcane EST databases, phylogenetic analysis, a search for conserved amino acid residues important for enzymatic function, and analysis of expression patterns during culm development in two lignin-contrasting genotypes. Of these genes, 15 were cloned and, when available, their loci were identified using the recently released sugarcane genomes from Saccharum hybrid R570 and Saccharum spontaneum cultivars. Our analysis points out that ShPAL1, ShPAL2, ShC4H4, Sh4CL1, ShHCT1, ShC3H1, ShC3H2, ShCCoAOMT1, ShCOMT1, ShF5H1, ShCCR1, ShCAD2, and ShCAD7 are strong candidates to be bona fide lignin biosynthesis genes. Together, the results provide information about the candidate genes involved in monolignol biosynthesis in sugarcane and may provide useful information for further molecular genetic studies in sugarcane.


Asunto(s)
Vías Biosintéticas/genética , Lignina/biosíntesis , Proteínas de Plantas/genética , Propanoles/metabolismo , Saccharum/genética , Saccharum/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Lignina/genética , Propanoles/química , Saccharum/clasificación , Saccharum/crecimiento & desarrollo
7.
Ecotoxicology ; 29(7): 866-875, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32728874

RESUMEN

Pharmaceutical compounds end up in wastewater treatment plants but little is known on their effect towards the different microbial groups in anaerobic communities. In this work, the effect of the antibiotic Ciprofloxacin (CIP), the non-steroidal anti-inflammatory drugs Diclofenac (DCF) and Ibuprofen (IBP), and the hormone 17α-ethinylestradiol (EE2), on the activity of acetogens and methanogens in anaerobic communities, was investigated. Microbial communities were more affected by CIP, followed by EE2, DCF and IBP, but the response of the different microbial groups was dissimilar. For concentrations of 0.01 to 0.1 mg/L, the specific methanogenic activity was not affected. Acetogenic bacteria were sensitive to CIP concentrations above 1 mg/L, while DCF and EE2 toxicity was only detected for concentrations higher than 10 mg/L, and IBP had no effect in all concentrations tested. Acetoclastic methanogens showed higher sensitivity to the presence of these micropollutants, being affect by all the tested pharmaceutical compounds although at different degrees. Hydrogenotrophic methanogens were not affected by any concentration, indicating their lower sensitivity to these compounds when compared to acetoclasts and acetogens.


Asunto(s)
Bacterias/metabolismo , Contaminantes Químicos del Agua/efectos adversos , Anaerobiosis , Bacterias/efectos de los fármacos , Ciprofloxacina/efectos adversos , Diclofenaco/efectos adversos , Etinilestradiol/efectos adversos , Ibuprofeno/efectos adversos , Microbiota/efectos de los fármacos , Aguas Residuales/microbiología
8.
Environ Sci Technol ; 52(18): 10241-10253, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30118213

RESUMEN

Conductive materials (CM) have been extensively reported to enhance methane production in anaerobic digestion processes. The occurrence of direct interspecies electron transfer (DIET) in microbial communities, as an alternative or complementary to indirect electron transfer (via hydrogen or formate), is the main explanation given to justify the improvement of methane production. Not disregarding that DIET can be promoted in the presence of certain CM, it surely does not explain all the reported observations. In fact, in methanogenic environments DIET was only unequivocally demonstrated in cocultures of Geobacter metallireducens with Methanosaeta harundinacea or Methanosarcina barkeri and frequently Geobacter sp. are not detected in improved methane production driven systems. Furthermore, conductive carbon nanotubes were shown to accelerate the activity of methanogens growing in pure cultures, where DIET is not expected to occur, and hydrogenotrophic activity is ubiquitous in full-scale anaerobic digesters treating for example brewery wastewaters, indicating that interspecies hydrogen transfer is an important electron transfer mechanism in those systems. This paper presents an overview of the effect of several iron-based and carbon-based CM in bioengineered systems, focusing on the improvement in methane production and in microbial communities' changes. Control assays, as fundamental elements to support major conclusions in reported experiments, are critically revised and discussed.


Asunto(s)
Geobacter , Nanotubos de Carbono , Transporte de Electrón , Hidrógeno , Metano
9.
Environ Microbiol ; 19(7): 2727-2739, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28447396

RESUMEN

Carbon materials have been reported to facilitate direct interspecies electron transfer (DIET) between bacteria and methanogens improving methane production in anaerobic processes. In this work, the effect of increasing concentrations of carbon nanotubes (CNT) on the activity of pure cultures of methanogens and on typical fatty acid-degrading syntrophic methanogenic coculture was evaluated. CNT affected methane production by methanogenic cultures, although acceleration was higher for hydrogenotrophic methanogens than for acetoclastic methanogens or syntrophic coculture. Interestingly, the initial methane production rate (IMPR) by Methanobacterium formicicum cultures increased 17 times with 5 g·L-1 CNT. Butyrate conversion to methane by Syntrophomonas wolfei and Methanospirillum hungatei was enhanced (∼1.5 times) in the presence of CNT (5 g·L-1 ), but indications of DIET were not obtained. Increasing CNT concentrations resulted in more negative redox potentials in the anaerobic microcosms. Remarkably, without a reducing agent but in the presence of CNT, the IMPR was higher than in incubations with reducing agent. No growth was observed without reducing agent and without CNT. This finding is important to re-frame discussions and re-interpret data on the role of conductive materials as mediators of DIET in anaerobic communities. It also opens new challenges to improve methane production in engineered methanogenic processes.


Asunto(s)
Bacterias Anaerobias/metabolismo , Metano/biosíntesis , Methanobacterium/metabolismo , Methanospirillum/metabolismo , Nanotubos de Carbono/química , Butiratos/química , Técnicas de Cocultivo , Transporte de Electrón/fisiología
10.
Virol J ; 12: 123, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26260343

RESUMEN

BACKGROUND: The RNA silencing pathway is an important anti-viral defense mechanism in plants. As a counter defense, some members of the viral family Luteoviridae are able to evade host immunity by encoding the P0 RNA silencing suppressor protein. Here we explored the functional diversity of P0 proteins among eight cotton leafroll dwarf virus (CLRDV) isolates, a virus associated with a worldwide cotton disease known as cotton blue disease (CBD). METHODS: CLRDV-infected cotton plants of different varieties were collected from five growing fields in Brazil and their P0 sequences compared to three previously obtained isolates. P0's silencing suppression activities were scored based on transient expression experiments in Nicotiana benthamiana leaves. RESULTS: High sequence diversity was observed among CLRDV P0 proteins, indicating that some isolates found in cotton varieties formerly resistant to CLRDV should be regarded as new genotypes within the species. All tested proteins were able to suppress local and systemic silencing, but with significantly variable degrees. All P0 proteins were able to mediate the decay of ARGONAUTE proteins, a key component of the RNA silencing machinery. CONCLUSIONS: The sequence diversity observed in CLRDV P0s is also reflected in their silencing suppression capabilities. However, the strength of local and systemic silencing suppression was not correlated for some proteins.


Asunto(s)
Gossypium/virología , Luteoviridae/metabolismo , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo , Brasil , Expresión Génica , Silenciador del Gen , Genes Reporteros , Variación Genética , Geografía , Luteoviridae/clasificación , Luteoviridae/genética , Luteoviridae/aislamiento & purificación , Filogenia , Plantas Modificadas Genéticamente , Proteínas Virales/genética
11.
ACS ES T Water ; 4(3): 784-804, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38482340

RESUMEN

Wastewater treatment companies are facing several challenges related to the optimization of energy efficiency, meeting more restricted water quality standards, and resource recovery potential. Over the past decades, computational models have gained recognition as effective tools for addressing some of these challenges, contributing to the economic and operational efficiencies of wastewater treatment plants (WWTPs). To predict the performance of WWTPs, numerous deterministic, stochastic, and time series-based models have been developed. Mechanistic models, incorporating physical and empirical knowledge, are dominant as predictive models. However, these models represent a simplification of reality, resulting in model structure uncertainty and a constant need for calibration. With the increasing amount of available data, data-driven models are becoming more attractive. The implementation of predictive models can revolutionize the way companies manage WWTPs by permitting the development of digital twins for process simulation in (near) real-time. In data-driven models, the structure is not explicitly specified but is instead determined by searching for relationships in the available data. Thus, the main objective of the present review is to discuss the implementation of machine learning models for the prediction of WWTP effluent characteristics and wastewater inflows as well as anomaly detection studies and energy consumption optimization in WWTPs. Furthermore, an overview considering the merging of both mechanistic and machine learning models resulting in hybrid models is presented as a promising approach. A critical assessment of the main gaps and future directions on the implementation of mathematical modeling in wastewater treatment processes is also presented, focusing on topics such as the explainability of data-driven models and the use of Transfer Learning processes.

12.
Environ Technol ; 34(13-16): 1777-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350434

RESUMEN

Photosynthetic microalgae are unicellular organisms that, during their cultivation, can fix carbon dioxide efficiently from various sources, including the air and exhaust gases from industrial processes. This feature can lead to economic benefits in the production process of biodiesel by way of the clean development mechanism, for which carbon credits for environmental benefits may be granted and which will contribute towards reducing costs in the production process. This study seeks to quantify the contribution of carbon credits in the operating costs of a route for biodiesel production from microalgae, as proposed by Davis et al. [Techno-economic analysis ofautotrophic microalgae for fuel production. Appl Energy. 2011; 88:3524-3531]. The results showed a reduction in annual operating costs by around 5%. This figure may be conservative, since the production process considered can be further improved to reduce operating costs and thus increase the contribution margin of carbon credits, which will reduce costs. On the other hand, the price of carbon may also rise in the future, thereby increasing its contribution towards a reduction in operating costs.


Asunto(s)
Biocombustibles , Dióxido de Carbono/química , Microalgas/química , Biotecnología/economía , Biotecnología/métodos , Dióxido de Carbono/metabolismo , Calentamiento Global , Microalgas/metabolismo
13.
Environ Technol ; 34(13-16): 1947-56, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350448

RESUMEN

A very compact flat microbial fuel cell (MFC), with 64 cm2 each for the anode surface and the cathode surface and 1 cm3 each for the anode and cathode chambers, was tested for wastewater treatment with simultaneous electricity production with the ultimate goal of implementing an autonomous service in decentralized wastewater treatment systems. The MFC was operated with municipal wastewater in sequencing batch reactor mode with re-circulation. Current densities up to 407 W/m3 and a carbon removal of 83% were obtained. Interruption in the operation slightly decreased power density, while the re-circulation ratio did not influence power generation. The anode biofilm presented high conductivity, activity and diversity. The denaturing gradient gel electrophoresis band-pattern of the DNA showed the presence of several ribotypes with different species of Shewanellaceae and Geobacteraceae families.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Biopelículas , Carbono/química , Electroforesis en Gel de Gradiente Desnaturalizante , Conductividad Eléctrica , Hierro/química , Viabilidad Microbiana , Microscopía Confocal , Aguas Residuales/química , Aguas Residuales/microbiología
14.
Biomol NMR Assign ; 17(1): 143-149, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37145295

RESUMEN

AtGRP2 (Arabidopsis thaliana glycine-rich protein 2) is a 19-kDa RNA-binding glycine-rich protein that regulates key processes in A. thaliana. AtGRP2 is a nucleo-cytoplasmic protein with preferential expression in developing tissues, such as meristems, carpels, anthers, and embryos. AtGRP2 knockdown leads to an early flowering phenotype. In addition, AtGRP2-silenced plants exhibit a reduced number of stamens and abnormal development of embryos and seeds, suggesting its involvement in plant development. AtGRP2 expression is highly induced by cold and abiotic stresses, such as high salinity. Moreover, AtGRP2 promotes double-stranded DNA/RNA denaturation, indicating its role as an RNA chaperone during cold acclimation. AtGRP2 is composed of an N-terminal cold shock domain (CSD) followed by a C-terminal flexible region containing two CCHC-type zinc fingers interspersed with glycine-rich sequences. Despite its functional relevance in flowering time regulation and cold adaptation, the molecular mechanisms employed by AtGRP2 are largely unknown. To date, there is no structural information regarding AtGRP2 in the literature. Here, we report the 1H, 15N, and 13C backbone and side chain resonance assignments, as well as the chemical shift-derived secondary structure propensities, of the N-terminal cold shock domain of AtGRP2, encompassing residues 1-90. These data provide a framework for AtGRP2-CSD three-dimensional structure, dynamics, and RNA binding specificity investigation, which will shed light on its mechanism of action.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Unión al ARN , Proteínas de Arabidopsis/química , Respuesta al Choque por Frío , Glicina/metabolismo , Resonancia Magnética Nuclear Biomolecular , ARN/metabolismo , Proteínas de Unión al ARN/química
15.
Gene ; 883: 147668, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37500024

RESUMEN

Castor bean (Ricinus communis L.) can withstand long periods of water deficit and high temperatures, and therefore has been recognized as a drought-resistant plant species, allowing the study of gene networks involved in drought response and tolerance. The identification of genes networks related to drought response in this plant may yield important information in the characterization of molecular mechanisms correlating changes in the gene expression with the physiological adaptation processes. In this context, gene families related to abscisic acid (ABA) signaling play a crucial role in developmental and environmental adaptation processes of plants to drought stress. However, the families that function as the core components of ABA signaling, as well as genes networks related to drought response, are not well understood in castor bean. In this study 7 RcPYL, 63 RcPP2C, and 6 RcSnRK2 genes were identified in castor bean genome, which was further supported by chromosomal distribution, gene structure, evolutionary relationships, and conserved motif analyses. The castor bean general expression profile was investigated by RNAseq in root and leaf tissues in response to drought stress. These analyses allowed the identification of genes differentially expressed, including genes from the ABA signaling core, genes related to photosynthesis, cell wall, energy transduction, antioxidant response, and transcription factors. These analyses provide new insights into the core components of ABA signaling in castor bean, allow the identification of several molecular responses associated with the high physiological adaptation of castor bean to drought stress, and contribute to the identification of candidate genes for genetic improvement.


Asunto(s)
Ricinus communis , Ricinus communis/genética , Ricinus communis/metabolismo , Ricinus/genética , Ricinus/metabolismo , Redes Reguladoras de Genes , Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo
16.
PLoS One ; 18(8): e0284717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37535627

RESUMEN

This study investigates the physiological response to heat stress of three genetically different Symbiodiniaceae strains isolated from the scleractinian coral Mussismilia braziliensis, endemic of the Abrolhos Bank, Brazil. Cultures of two Symbiodinium sp. and one Cladocopium sp. were exposed to a stepwise increase in temperature (2°C every second day) ranging from 26°C (modal temperature in Abrolhos) to 32°C (just above the maximum temperature registered in Abrolhos during the third global bleaching event-TGBE). After the cultures reached their final testing temperature, reactive oxygen species (ROS) production, single cell attributes (relative cell size and chlorophyll fluorescence), and photosynthetic efficiency (effective (Y(II)) and maximum (Fv/Fm) quantum yields) were measured within 4 h and 72 h. Non-photochemical coefficient (NPQ) was estimated based on fluorescence values. Population average ROS production was variable across strains and exposure times, reaching up a 2-fold increase at 32°C in one of the Symbiodinium sp. strains. A marked intrapopulation difference was observed in ROS production, with 5 to 25% of the cells producing up to 10 times more than the population average, highlighting the importance of single cell approaches to assess population physiology. Average cell size increases at higher temperatures, likely resulting from cell cycle arrest, whereas chlorophyll fluorescence decreased, especially in 4 h, indicating a photoacclimation response. The conditions tested do not seem to have elicited loss of photosynthetic efficiency nor the activation of non-photochemical mechanisms in the cells. Our results unveiled a generalized thermotolerance in three Symbiodiniaceae strains originated from Abrolhos' corals. Inter and intra-specific variability could be detected, likely reflecting the genetic differences among the strains.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Especies Reactivas de Oxígeno/metabolismo , Fotosíntesis/fisiología , Antozoos/fisiología , Respuesta al Choque Térmico , Calor , Dinoflagelados/fisiología , Clorofila/metabolismo , Simbiosis/fisiología , Estrés Fisiológico
17.
Microorganisms ; 10(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36363734

RESUMEN

Waste and wastewater containing hydrocarbons are produced worldwide by various oil-based industries, whose activities also contribute to the occurrence of oil spills throughout the globe, causing severe environmental contamination. Anaerobic microorganisms with the ability to biodegrade petroleum hydrocarbons are important in the treatment of contaminated matrices, both in situ in deep subsurfaces, or ex situ in bioreactors. In the latter, part of the energetic value of these compounds can be recovered in the form of biogas. Anaerobic degradation of petroleum hydrocarbons can be improved by various iron compounds, but different iron species exert distinct effects. For example, Fe(III) can be used as an electron acceptor in microbial hydrocarbon degradation, zero-valent iron can donate electrons for enhanced methanogenesis, and conductive iron oxides may facilitate electron transfers in methanogenic processes. Iron compounds can also act as hydrocarbon adsorbents, or be involved in secondary abiotic reactions, overall promoting hydrocarbon biodegradation. These multiple roles of iron are comprehensively reviewed in this paper and linked to key functional microorganisms involved in these processes, to the underlying mechanisms, and to the main influential factors. Recent research progress, future perspectives, and remaining challenges on the application of iron-assisted anaerobic hydrocarbon degradation are highlighted.

18.
Biochim Biophys Acta Bioenerg ; 1863(6): 148559, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413247

RESUMEN

Although mitochondria have a central role in energy transduction and reactive oxygen species (ROS) production, the regulatory mechanisms and their involvement in plant stress signaling are not fully established. The phytohormone salicylic acid (SA) is an important regulator of mitochondria-mediated ROS production and defense signaling. The role of SA and adenine nucleotides in the regulation of the mitochondrial succinate dehydrogenase (SDH) complex activity and ROS production was analyzed using WT, RNAi SDH1-1 and disrupted stress response 1 (dsr1) mutants, which show a point mutation in SDH1 subunit and are defective in SA signaling. Our results showed that SA and adenine nucleotides regulate SDH complex activity by distinct patterns, contributing to increased SDH-derived ROS production. As previously demonstrated, SA induces the succinate-quinone reductase activity of SDH complex, acting at or near the ubiquinone binding site. On the other hand, here we demonstrated that adenine nucleotides, such as AMP, ADP and ATP, induce the SDH activity provided by the SDH1 subunit. The regulation of SDH activity by adenine nucleotides is dependent on mitochondrial integrity and is prevented by atractyloside, an inhibitor of adenine nucleotide translocator (ANT), suggesting that the regulatory mechanism occurs on the mitochondrial matrix side of the inner mitochondrial membrane, and not in the intermembrane space, as previously suggested. On the other hand, in the intermembrane space, ADP and ATP limit mitochondrial oxygen consumption by a mechanism that appears to be related to cytochrome bc1 complex inhibition. Altogether, these results indicate that SA signaling and adenine nucleotides regulate the mitochondrial electron transport system and mitochondria-derived ROS production by direct effect in the electron transport system complexes, bringing new insights into mechanisms with direct implications in plant development and responses to different environmental responses, serving as a starting point for future physiological explorations.


Asunto(s)
Mitocondrias , Ácido Salicílico , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Transporte de Electrón , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología
19.
FEBS Lett ; 596(23): 2989-3004, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35776057

RESUMEN

Ascorbate peroxidases (APXs) are heme peroxidases that remove hydrogen peroxide in different subcellular compartments with concomitant ascorbate cycling. Here, we analysed and discussed phylogenetic and molecular features of the APX family. Ancient APX originated as a soluble stromal enzyme, and early during plant evolution, acquired both chloroplast-targeting and mitochondrion-targeting sequences and an alternative splicing mechanism whereby it could be expressed as a soluble or thylakoid membrane-bound enzyme. Later, independent duplication and neofunctionalization events in some angiosperm groups resulted in individual genes encoding stromal, thylakoidal and mitochondrial isoforms. These data reaffirm the complexity of plant antioxidant defenses that allow diverse plant species to acquire new means to adapt to changing environmental conditions.


Asunto(s)
Peroxidasas , Tilacoides , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Tilacoides/metabolismo , Filogenia , Peroxidasas/genética , Peroxidasas/metabolismo , Cloroplastos/metabolismo , Peróxido de Hidrógeno/metabolismo , Antioxidantes , Regulación de la Expresión Génica de las Plantas
20.
Biology (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36671712

RESUMEN

Ascorbate peroxidase (APX), Monodehydroascorbate Reductase (MDAR), Dehydroascorbate Reductase (DHAR) and Glutathione Reductase (GR) enzymes participate in the ascorbate-glutathione cycle, which exerts a central role in the antioxidant metabolism in plants. Despite the importance of this antioxidant system in different signal transduction networks related to development and response to environmental stresses, the pathway has not yet been comprehensively characterized in many crop plants. Among different eudicotyledons, the Euphorbiaceae family is particularly diverse with some species highly tolerant to drought. Here the APX, MDAR, DHAR, and GR genes in Ricinus communis, Jatropha curcas, Manihot esculenta, and Hevea brasiliensis were identified and characterized. The comprehensive phylogenetic and genomic analyses allowed the classification of the genes into different classes, equivalent to cytosolic, peroxisomal, chloroplastic, and mitochondrial enzymes, and revealed the duplication events that contribute to the expansion of these families within plant genomes. Due to the high drought stress tolerance of Ricinus communis, the expression patterns of ascorbate-glutathione cycle genes in response to drought were also analyzed in leaves and roots, indicating a differential expression during the stress. Altogether, these data contributed to the characterization of the expression pattern and evolutionary analysis of these genes, filling the gap in the proposed functions of core components of the antioxidant mechanism during stress response in an economically relevant group of plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA