Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain Behav Immun ; 116: 404-418, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142919

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder involving psychiatric, cognitive and motor deficits, as well as peripheral symptoms, including gastrointestinal dysfunction. The R6/1 HD mouse model expresses a mutant human huntingtin transgene and has been shown to provide an accurate disease model. Recent evidence of gut microbiome disruption was shown in preclinical and clinical HD. Therefore, we aimed to assess the potential role of gut microbial modulation in the treatment of HD. The R6/1 HD mice and wild-type littermate controls were randomised to receive diets containing different amounts of fibre: high-fibre (10 % fibre), control (5 % fibre), or zero-fibre (0 % fibre), from 6 to 20 weeks of age. We characterized the onset and progression of motor, cognitive and affective deficits, as well as gastrointestinal function and gut morphological changes. Faeces were collected for gut microbiome profiling using 16S rRNA sequencing, at 14 and 20 weeks of age. When compared to the control diet, high-fibre diet improved the performance of HD mice in behavioral tests of cognitive and affective function, as well as the gastrointestinal function of both HD and wild-type mice. While the diets changed the beta diversity of wild-type mice, no statistical significance was observed at 14 or 20 weeks of age within the HD mice. Analysis of Composition of Microbiomes with Bias Correction (ANCOM-BC) models were performed to evaluate microbiota composition, which identified differences, including a decreased relative abundance of the phyla Actinobacteriota, Campylobacterota and Proteobacteria and an increased relative abundance of the families Bacteroidaceae, Oscillospiraceae and Ruminococcaceae in HD mice when compared to wild-type mice after receiving high-fibre diet. PICRUSt2 revealed that high-fibre diet also decreased potentially pathogenic functional pathways in HD. In conclusion, high-fibre intake was effective in enhancing gastrointestinal function, cognition and affective behaviors in HD mice. These findings indicate that dietary fibre interventions may have therapeutic potential in Huntington's disease to delay clinical onset, and have implications for related disorders exhibiting dysfunction of the gut-brain axis.


Asunto(s)
Enfermedad de Huntington , Humanos , Ratones , Animales , Enfermedad de Huntington/terapia , Enfermedad de Huntington/genética , Ratones Transgénicos , ARN Ribosómico 16S , Cognición , Modelos Animales de Enfermedad , Fibras de la Dieta
2.
Brain Behav Immun ; 123: 290-305, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293692

RESUMEN

The paternal environment prior to conception has been demonstrated to influence offspring physiology and behavior, with the sperm epigenome (including noncoding RNAs) proposed as a potential facilitator of non-genetic inheritance. Whilst the maternal gut microbiome has been established as an important influence on offspring development, the impact of the paternal gut microbiome on offspring development, health and behavior is largely unknown. Gut microbiota have major influences on immunity, and thus we hypothesized that they may be relevant to paternal immune activation (PIA) modulating epigenetic inheritance in mice. Therefore, male C57BL/6J mice (F0) were orally administered non-absorbable antibiotics via drinking water in order to substantially deplete their gut microbiome. Four weeks after administration of the antibiotics (gut microbiome depletion), F0 male mice were then mated with naïve female mice. The F1 offspring of the microbiome-depleted males had reduced body weight as well as altered gut morphology (shortened colon length). F1 females showed significant alterations in affective behaviors, including measures of anxiety and depressive-like behaviors, indicating altered development. Analysis of small noncoding RNAs in the sperm of F0 mice revealed that gut microbiome depletion is associated with differential expression of 8 different PIWI-interacting RNAs (piRNAs), each of which has the potential to modulate the expression of multiple downstream gene targets, and thus influence epigenetic inheritance and offspring development. This study demonstrates that the gut-germline axis influences sperm small RNA profiles and offspring physiology, with specific impacts on offspring affective and/or coping behaviors. These findings may have broader implications for other animal species with comparable gut microbiota, intergenerational epigenetics and developmental biology, including humans.

3.
Int Rev Neurobiol ; 167: 141-184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36427954

RESUMEN

Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an autosomal dominant trinucleotide (CAG) tandem repeat, resulting in complex motor, psychiatric and cognitive symptoms as well as gastrointestinal disturbances and other peripheral symptoms. There are currently no disease-modifying treatments, and the peripheral pathology of the disorder is not well understood. Emerging evidence suggests that the bi-directional communication pathways between the gut and the brain, including the microbiota-gut-brain axis, can affect motor, psychiatric and cognitive symptoms as well as weight loss and sexual dimorphism seen in HD. Furthermore, both HD and the microbiota-gut-brain axis can be influenced by environmental factors, opening potential new avenues to explore therapeutic options for this devastating disorder.


Asunto(s)
Enfermedad de Huntington , Microbiota , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Huntington/patología , Eje Cerebro-Intestino , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/patología
4.
Brain Commun ; 4(4): fcac205, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035436

RESUMEN

Huntington's disease is a neurodegenerative disorder involving psychiatric, cognitive and motor symptoms. Huntington's disease is caused by a tandem-repeat expansion in the huntingtin gene, which is widely expressed throughout the brain and body, including the gastrointestinal system. There are currently no effective disease-modifying treatments available for this fatal disorder. Despite recent evidence of gut microbiome disruption in preclinical and clinical Huntington's disease, its potential as a target for therapeutic interventions has not been explored. The microbiota-gut-brain axis provides a potential pathway through which changes in the gut could modulate brain function, including cognition. We now show that faecal microbiota transplant (FMT) from wild-type into Huntington's disease mice positively modulates cognitive outcomes, particularly in females. In Huntington's disease male mice, we revealed an inefficiency of FMT engraftment, which is potentially due to the more pronounced changes in the structure, composition and instability of the gut microbial community, and the imbalance in acetate and gut immune profiles found in these mice. This study demonstrates a role for gut microbiome modulation in ameliorating cognitive deficits modelling dementia in Huntington's disease. Our findings pave the way for the development of future therapeutic approaches, including FMT and other forms of gut microbiome modulation, as potential clinical interventions for Huntington's disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA