Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 16(3): e0248528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33711052

RESUMEN

A total of 163 S. aureus isolates; 113 from mastitic milk (MM) and 50 from bulk tank milk (BTM) (2008, 2013-2015) submitted for bacteriologic analysis at the Penn State Animal Diagnostic Laboratory were examined for their phenotypic and genotypic characteristics. Multi-locus sequence typing (MLST) analysis identified 16 unique sequence types (STs) which belonged to eight clonal complexes (CCs). Majority of the isolates were variants of CC97 (68.7%) and CC151 (25.1%). CC97 comprised of seven STs, of which two were new STs (ST3273, ST3274), while CC151 comprised of three STs of which ST3272 was identified for the first time. Several farms had more than one ST type that were either members of the same clonal complex or unrelated STs. On one farm, six different STs of both categories were seen over the years within the farm. It was observed that ST352 and ST151 were the two main clonal populations in cattle not only in Pennsylvania but also globally. Most isolates were susceptible to all the antibiotics evaluated. 6.7% of isolates showed resistance to vancomycin and penicillin. Two isolates of ST398 showed multidrug resistance (>3 antibiotics) against clindamycin, erythromycin, tetracycline, and penicillin. It was noted that 59 of 163 (36.2%) isolates encoded for enterotoxigenic genes. Enterotoxin genes seg/sei accounted for ~85% of enterotoxin positive isolates. Toxic shock syndrome gene tsst-1 alone was positive in two isolates (ST352, ST 2187). 97.5% of CC151 isolates were enterotoxin seg/sei positive. Most isolates were positive for lukED (95%) and lukAB (96.3%) leukotoxin genes. Bovine specific bi-component leucocidin lukMF' was present in 54% of isolates. A prominent observation of this study was the explicit association of lukMF' with lineages ST151 and ST352. In conclusion, the findings of the study, suggest that small number of S. aureus STs types (ST352, ST2187, ST3028, and ST151) are associated with majority of cases of bovine mastitis in Pennsylvania dairy farms. It was observed that one ST of S. aureus predominated in the herd and this ST can coexist with several other ST types of S. aureus strains. When STs were interpreted along with virulence, leucocidin genes and antimicrobial resistance, ST-variants allowed better interpretation of the S. aureus molecular epidemiologic findings specifically for tracing recurrence or persistence of infections in cow over time, among cows in the herd, and between herds in Pennsylvania.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Mastitis Bovina , Tipificación de Secuencias Multilocus , Infecciones Estafilocócicas , Staphylococcus aureus/genética , Animales , Bovinos , Femenino , Mastitis Bovina/epidemiología , Mastitis Bovina/genética , Mastitis Bovina/microbiología , Pennsylvania/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/microbiología
2.
Front Vet Sci ; 8: 609126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912603

RESUMEN

Avibacterium paragallinarum (historically called Hemophilus paragallinarum) causes infectious coryza (IC), which is an acute respiratory disease of chickens. Recently, outbreaks of IC have been reported in Pennsylvania (PA) in broilers, layer pullets, and laying hens, causing significant respiratory disease and production losses. A tentative diagnosis of IC can be made based on history, clinical signs, and characteristic gross lesions. However, isolation and identification of the organism are required for a definitive diagnosis. Major challenges with the bacteriological diagnosis of A. paragallinarum include that the organism is difficult to isolate, slow-growing, and can only be successfully isolated during the acute stage of infection and secondary bacterial infections are also common. As there were very limited whole genomes of A. paragallinarum in the public databases, we carried out whole-genome sequencing (WGS) of PA isolates and based on the WGS data analysis; we designed a novel probe-based PCR assay targeting a highly conserved sequence in the recN, the DNA repair protein gene of A. paragallinarum. The assay includes an internal control, with a limit of detection (LOD) of 3.93 genomic copies. The PCR efficiency ranged between 90 and 97%, and diagnostic sensitivity of 98.5% compared with conventional gel-based PCR. The test was highly specific, and no cross-reactivity was observed with other species of Avibacterium and a range of other common poultry respiratory viral and bacterial pathogens. Real-time PCR testing on 419 clinical samples from suspected flocks yielded 94 positives and 365 negatives in agreement with diagnostic bacterial culture-based detection. We also compared the recN PCR assay with a previous HPG-2 based real-time PCR assay which showed a PCR efficiency of 79%.

3.
Microbiol Resour Announc ; 9(27)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616650

RESUMEN

Avibacterium paragallinarum, the causative agent of infectious coryza, causes significant economic losses to the poultry industry due to increased culling rates in growing chickens and decreased egg production in layers. We present the complete genome sequences of seven strains of Avibacterium paragallinarum isolated from poultry farms in Pennsylvania during 2019.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA