Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Learn Mem ; 203: 107778, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37257558

RESUMEN

Aminergic neurons mediate reward signals in mammals and insects. In crickets, we showed that blockade of synaptic transmission from octopamine neurons (OANs) impairs conditioning of an odor (conditioned stimulus, CS) with water or sucrose (unconditioned stimulus, US) and execution of a conditioned response (CR) to the CS. It has not yet been established, however, whether findings in crickets can be applied to other species of insects. In this study, we investigated the roles of OANs in conditioning of salivation, monitored by activities of salivary neurons, and in execution of the CR in cockroaches (Periplaneta americana). We showed that injection of epinastine (an OA receptor antagonist) into the head hemolymph impaired both conditioning and execution of the CR, in accordance with findings in crickets. Moreover, local injection of epinastine into the vertical lobes of the mushroom body (MB), the center for associative learning and control of the CR, impaired execution of the CR, whereas injection of epinastine into the calyces of the MB or the antennal lobes (primary olfactory centers) did not. We propose that OANs in the MB vertical lobes play critical roles in the execution of the CR in cockroaches. This is analogous to the fact that midbrain dopamine neurons govern execution of learned actions in mammals.


Asunto(s)
Cucarachas , Animales , Octopamina , Cuerpos Pedunculados , Neuronas Dopaminérgicas/fisiología , Mamíferos
2.
Front Physiol ; 15: 1345397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405118

RESUMEN

Acetylcholine (ACh) is a major excitatory neurotransmitter in the insect central nervous system, and insect neurons express several types of ACh receptors (AChRs). AChRs are classified into two subgroups, muscarinic AChRs and nicotinic AChRs (nAChRs). nAChRs are also divided into two subgroups by sensitivity to α-bungarotoxin (α-BGT). The cricket Gryllus bimaculatus is one of the useful insects for studying the molecular mechanisms in olfactory learning and memory. However, the roles of nAChRs in olfactory learning and memory of the cricket are still unknown. In the present study, to investigate whether nAChRs are involved in cricket olfactory learning and memory, we tested the effects of two different AChR antagonists on long-term memory (LTM) formation and retrieval in a behavioral assay. The two AChR antagonists that we used are mecamylamine (MEC), an α-BGT-insensitive nAChR antagonist, and methyllycaconitine (MLA), an α-BGT-sensitive nAChR antagonist. In crickets, multiple-trial olfactory conditioning induced 1-day memory (LTM), whereas single-trial olfactory conditioning induced 1-h memory (mid-term memory, MTM) but not 1-day memory. Crickets injected with MEC 20 min before the retention test at 1 day after the multiple-trial conditioning exhibited no memory retrieval. This indicates that α-BGT-insensitive nAChRs participate in memory retrieval. In addition, crickets injected with MLA before the multiple-trial conditioning exhibited MTM but not LTM, indicating that α-BGT-sensitive nAChRs participate in the formation of LTM. Moreover, injection of nicotine (an nAChR agonist) before the single-trial conditioning induced LTM. Finally, the nitric oxide (NO)-cGMP signaling pathway is known to participate in the formation of LTM in crickets, and we conducted co-injection experiments with an agonist or inhibitor of the nAChR and an activator or inhibitor of the NO-cGMP signaling pathway. The results suggest that nAChR works upstream of the NO-cGMP signaling system in the LTM formation process.

3.
Neurobiol Learn Mem ; 97(1): 30-6, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21930226

RESUMEN

Context-dependent discrimination learning, a sophisticated form of nonelemental associative learning, has been found in many animals, including insects. The major purpose of this research is to establish a method for monitoring this form of nonelemental learning in rigidly restrained insects for investigation of underlying neural mechanisms. We report context-dependent olfactory learning (occasion-setting problem solving) of salivation, which can be monitored as activity changes of salivary neurons in immobilized cockroaches, Periplaneta americana. A group of cockroaches was trained to associate peppermint odor (conditioned stimulus, CS) with sucrose solution reward (unconditioned stimulus, US) while vanilla odor was presented alone without pairing with the US under a flickering light condition (1.0 Hz) and also trained to associate vanilla odor with sucrose reward while peppermint odor was presented alone under a steady light condition. After training, the responses of salivary neurons to the rewarded peppermint odor were significantly greater than those to the unrewarded vanilla odor under steady illumination and those to the rewarded vanilla odor was significantly greater than those to the unrewarded peppermint odor in the presence of flickering light. Similar context-dependent responses were observed in another group of cockroaches trained with the opposite stimulus arrangement. This study demonstrates context-dependent olfactory learning of salivation for the first time in any vertebrate and invertebrate species, which can be monitored by activity changes of salivary neurons in restrained cockroaches.


Asunto(s)
Aprendizaje Discriminativo/fisiología , Neuronas/fisiología , Percepción Olfatoria/fisiología , Olfato/fisiología , Animales , Cucarachas/fisiología , Condicionamiento Clásico/fisiología , Masculino , Odorantes , Estimulación Luminosa , Conductos Salivales/inervación
4.
Neurobiol Learn Mem ; 95(1): 1-13, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20951220

RESUMEN

In insects, cholinergic neurons are thought to transmit olfactory conditioned stimulus (CS) to the sites for associating the CS with unconditioned stimulus (US), but the types of acetylcholine (ACh) receptor used by neurons participating in the association have not been determined. In cockroaches, a type of nicotinic ACh receptor specifically antagonized by mecamylamine (MEC) has been characterized. Here we investigated the roles of neurons possessing MEC-sensitive ACh receptors (MEC-sensitive neurons) in olfactory conditioning of salivation, monitored by changes in activities of salivary neurons, in cockroaches. Local and bilateral microinjection of MEC into each of the three olfactory centers, antennal lobes, calyces of the mushroom bodies and lateral protocerebra, impaired olfactory responses of salivary neurons, indicating that MEC-sensitive neurons in all olfactory centers participate in pathways mediating olfactory responses of salivary neurons. Conditioning of olfactory CS with sucrose US was impaired by injection of MEC into the antennal lobes or calyces, i.e., conditioned responses were absent even after recovery from MEC injection, suggesting that the CS-US association occurs in MEC-sensitive neurons in calyces (most probably Kenyon cells) or in neurons in downstream pathways. In contrast, conditioned responses appeared after recovery from MEC injection into the lateral protocerebra, suggesting that MEC-sensitive neurons in the lateral protocerebra are downstream of the association sites. Since lateral protocerebra are major termination areas of mushroom body efferent neurons, we suggest that input synapses of MEC-sensitive Kenyon cells, or their output synapses upon mushroom body efferent neurons, are the sites for CS-US association for conditioning of salivation.


Asunto(s)
Aprendizaje por Asociación/fisiología , Mecamilamina/farmacología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Antagonistas Nicotínicos/farmacología , Olfato/fisiología , Acetilcolina/metabolismo , Animales , Aprendizaje por Asociación/efectos de los fármacos , Cucarachas , Condicionamiento Clásico/fisiología , Electrofisiología , Masculino , Cuerpos Pedunculados/efectos de los fármacos , Neuronas/efectos de los fármacos
5.
Front Behav Neurosci ; 9: 230, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26388749

RESUMEN

Elucidation of reinforcing mechanisms for associative learning is an important subject in neuroscience. Based on results of our previous pharmacological studies in crickets, we suggested that octopamine and dopamine mediate reward and punishment signals, respectively, in associative learning. In fruit-flies, however, it was concluded that dopamine mediates both appetitive and aversive reinforcement, which differs from our suggestion in crickets. In our previous studies, the effect of conditioning was tested at 30 min after training or later, due to limitations of our experimental procedures, and thus the possibility that octopamine and dopamine were not needed for initial acquisition of learning was not ruled out. In this study we first established a conditioning procedure to enable us to evaluate acquisition performance in crickets. Crickets extended their maxillary palpi and vigorously swung them when they perceived some odors, and we found that crickets that received pairing of an odor with water reward or sodium chloride punishment exhibited an increase or decrease in percentages of maxillary palpi extension responses to the odor. Using this procedure, we found that octopamine and dopamine receptor antagonists impair acquisition of appetitive and aversive learning, respectively. This finding suggests that neurotransmitters mediating appetitive reinforcement differ in crickets and fruit-flies.

6.
J Insect Physiol ; 59(12): 1235-41, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24161373

RESUMEN

The cricket (Gryllus bimaculatus) is a hemimetabolous insect that is emerging as a model organism for the study of neural and molecular mechanisms of behavioral traits. However, research strategies have been limited by a lack of genetic manipulation techniques that target the nervous system of the cricket. The development of a new method for efficient gene delivery into cricket brains, using in vivo electroporation, is described here. Plasmid DNA, which contained an enhanced green fluorescent protein (eGFP) gene, under the control of a G. bimaculatus actin (Gb'-act) promoter, was injected into adult cricket brains. Injection was followed by electroporation at a sufficient voltage. Expression of eGFP was observed within the brain tissue. Localized gene expression, targeted to specific regions of the brain, was also achieved using a combination of local DNA injection and fine arrangement of the electroporation electrodes. Further studies using this technique will lead to a better understanding of the neural and molecular mechanisms that underlie cricket behaviors.


Asunto(s)
Electroporación , Técnicas de Transferencia de Gen , Gryllidae , Animales , Encéfalo , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA