Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(19): 10622-10630, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37139910

RESUMEN

In typical aqueous systems, including naturally occurring sweet and salt water and tap water, multiple ion species are co-solvated. At the water-air interface, these ions are known to affect the chemical reactivity, aerosol formation, climate, and water odor. Yet, the composition of ions at the water interface has remained enigmatic. Here, using surface-specific heterodyne-detected sum-frequency generation spectroscopy, we quantify the relative surface activity of two co-solvated ions in solution. We find that more hydrophobic ions are speciated to the interface due to the hydrophilic ions. Quantitative analysis shows that the interfacial hydrophobic ion population increases with decreasing interfacial hydrophilic ion population at the interface. Simulations show that the solvation energy difference between the ions and the intrinsic surface propensity of ions determine the extent of an ion's speciation by other ions. This mechanism provides a unified view of the speciation of monatomic and polyatomic ions at electrolyte solution interfaces.

2.
J Phys Chem B ; 127(23): 5288-5294, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37284731

RESUMEN

Organic molecules with aromatic groups at the aqueous interfaces play a central role in atmospheric chemistry, green chemistry, and on-water synthesis. Insights into the organization of interfacial organic molecules can be obtained using surface-specific vibrational sum-frequency generation (SFG) spectroscopy. However, the origin of the aromatic C-H stretching mode peak is unknown, prohibiting us from connecting the SFG signal to the interfacial molecular structure. Here, we explore the origin of the aromatic C-H stretching response by heterodyne-detected SFG (HD-SFG) at the liquid/vapor interface of benzene derivatives and find that, irrespective of the molecular orientation, the sign of the aromatic C-H stretching signals is negative for all the studied solvents. Together with density functional theory (DFT) calculations, we reveal that the interfacial quadrupole contribution dominates, even for the symmetry-broken benzene derivatives, although the dipole contribution is non-negligible. We propose a simple evaluation of the molecular orientation based on the aromatic C-H peak area.

3.
J Phys Chem Lett ; 14(21): 4949-4954, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37213084

RESUMEN

Accurate determination of protein structure at interfaces is critical for understanding protein interactions, which is directly relevant to a molecular-level understanding of interfacial proteins in biology and medicine. Vibrational sum frequency generation (VSFG) spectroscopy is often used for probing the protein amide I mode, which reports protein structures at interfaces. Observed peak shifts are attributed to conformational changes and often form the foundation of hypotheses explaining protein working mechanisms. Here, we investigate structurally diverse proteins using conventional and heterodyne-detected VSFG (HD-VSFG) spectroscopy as a function of solution pH. We reveal that blue-shifts of the amide I peak observed in conventional VSFG spectra upon lowering the pH are governed by the drastic change of the nonresonant contribution. Our results highlight that connecting changes in conventional VSFG spectra to conformational changes of interfacial proteins can be arbitrary, and that HD-VSFG measurements are required to draw unambiguous conclusions about structural changes in biomolecules.


Asunto(s)
Amidas , Agua , Agua/química , Proteínas/química , Análisis Espectral , Vibración
4.
J Phys Chem B ; 126(47): 9871-9880, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36350734

RESUMEN

Toward a comprehensive understanding of the mechanism of glycerol as a moisturizer, studies on the hydrogen-bond (HB) structure of hydration water, which is known to be disordered by glycerol, are insufficient. To this aim, we evaluated the HB configurations based on the HOH bending and OH stretching spectra of the hydration water from those of glycerol/water mixtures by subtracting the contributions of bulk water and glycerol using dielectric relaxation spectroscopy. Analysis of the HOH bending band showed that hydration water-donating HBs lose the intermolecular bending coupling with increasing glycerol by replacing the water-water HBs with water-glycerol HBs. The OH stretching band provided more detailed insight into the HB configuration, indicating that the double-donor double-acceptor and double-donor single-acceptor configurations in bulk water change to a predominantly double-donor single-acceptor configuration in hydration water around glycerol. The formation of more donor HBs than acceptor HBs may be due to the steric constrains by glycerol and/or differences in the partial charge on the oxygen atom between water and glycerol.


Asunto(s)
Glicerol , Agua , Agua/química , Enlace de Hidrógeno , Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA