RESUMEN
As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.
Asunto(s)
Calentamiento Global , Estaciones del Año , Temperatura , Árboles , Aclimatación , Biomasa , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Modelos Climáticos , Bosques , Calentamiento Global/estadística & datos numéricos , América del Norte , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Factores de Tiempo , Árboles/anatomía & histología , Árboles/clasificación , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Madera/crecimiento & desarrollo , Madera/metabolismoRESUMEN
Forests around the world are experiencing changes due to climate variability and human land use. How these changes interact and influence the vulnerability of forests are not well understood. In the eastern United States, well-documented anthropogenic disturbances and land-use decisions, such as logging and fire suppression, have influenced forest species assemblages, leading to a demographic shift from forests dominated by xeric species to those dominated by mesic species. Contemporarily, the climate has changed and is expected to continue to warm and produce higher evaporative demand, imposing stronger drought stress on forest communities. Here, we use an extensive network of tree-ring records from common hardwood species across ~100 sites and ~1300 trees in the eastern United States to examine the magnitude of growth response to both wet and dry climate extremes. We find that growth reductions during drought exceed the positive growth response to pluvials. Mesic species such as Liriodendron tulipifera and Acer saccharum, which are becoming more dominant, are more sensitive to drought than more xeric species, such as oaks (Quercus) and hickory (Carya), especially at moderate and extreme drought intensities. Although more extreme droughts produce a larger annual growth reduction, mild droughts resulted in the largest cumulative growth decreases due to their higher frequency. When using global climate model projections, all scenarios show drought frequency increasing substantially (3-9 times more likely) by 2100. Thus, the ongoing demographic shift toward more mesic species in the eastern United States combined with drier conditions results in larger drought-induced growth declines, suggesting that drought will have an even larger impact on aboveground carbon uptake in the future in the eastern United States.
Asunto(s)
Cambio Climático , Sequías , Bosques , Árboles , Árboles/crecimiento & desarrollo , Estados Unidos , ClimaRESUMEN
The impacts of inland flooding caused by tropical cyclones (TCs), including loss of life, infrastructure disruption, and alteration of natural landscapes, have increased over recent decades. While these impacts are well documented, changes in TC precipitation extremes-the proximate cause of such inland flooding-have been more difficult to detect. Here, we present a latewood tree-ring-based record of seasonal (June 1 through October 15) TC precipitation sums (ΣTCP) from the region in North America that receives the most ΣTCP: coastal North and South Carolina. Our 319-y-long ΣTCP reconstruction reveals that ΣTCP extremes (≥0.95 quantile) have increased by 2 to 4 mm/decade since 1700 CE, with most of the increase occurring in the last 60 y. Consistent with the hypothesis that TCs are moving slower under anthropogenic climate change, we show that seasonal ΣTCP along the US East Coast are positively related to seasonal average TC duration and TC translation speed.
RESUMEN
Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
Asunto(s)
Cambio Climático , Bosques , Biomasa , Clima , TemperaturaRESUMEN
Severe droughts can impart long-lasting legacies on forest ecosystems through lagged effects that hinder tree recovery and suppress whole-forest carbon uptake. However, the local climatic and edaphic factors that interact to affect drought legacies in temperate forests remain unknown. Here, we pair a dataset of 143 tree ring chronologies across the mesic forests of the eastern US with historical climate and local soil properties. We found legacy effects to be widespread, the magnitude of which increased markedly in diffuse porous species, sites with deep water tables, and in response to late-season droughts (August-September). Using an ensemble of downscaled climate projections, we additionally show that our sites are projected to drastically increase in water deficit and drought frequency by the end of the century, potentially increasing the size of legacy effects by up to 65% and acting as a significant process shaping forest composition, carbon uptake and mortality.
Asunto(s)
Sequías , Agua Subterránea , Cambio Climático , Bosques , Árboles , Agua , MaderaRESUMEN
Species-specific responses of plant intrinsic water-use efficiency (iWUE) to multiple environmental drivers associated with climate change, including soil moisture (θ), vapor pressure deficit (D), and atmospheric CO2 concentration (ca ), are poorly understood. We assessed how the iWUE and growth of several species of deciduous trees that span a gradient of isohydric to anisohydric water-use strategies respond to key environmental drivers (θ, D and ca ). iWUE was calculated for individual tree species using leaf-level gas exchange and tree-ring δ13 C in wood measurements, and for the whole forest using the eddy covariance method. The iWUE of the isohydric species was generally more sensitive to environmental change than the anisohydric species was, and increased significantly with rising D during the periods of water stress. At longer timescales, the influence of ca was pronounced for isohydric tulip poplar but not for others. Trees' physiological responses to changing environmental drivers can be interpreted differently depending on the observational scale. Care should be also taken in interpreting observed or modeled trends in iWUE that do not explicitly account for the influence of D.
Asunto(s)
Árboles/fisiología , Agua/metabolismo , Carbono/metabolismo , Dióxido de Carbono , Isótopos de Carbono/análisis , Cambio Climático , Sequías , Bosques , Indiana , Hojas de la Planta/metabolismo , Suelo/química , Análisis Espacio-Temporal , Especificidad de la Especie , Presión de VaporRESUMEN
Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These "drought legacy effects" have been widely documented in tree-ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree-ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree-ring records, leaf-level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree-ring width increments in the year following the severe drought. Despite this stand-scale reduction in radial growth, we found that leaf-level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf-level photosynthesis co-occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree-ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree-ring signals from GPP.
Asunto(s)
Sequías , Ecosistema , Bosques , Fotosíntesis , Hojas de la PlantaRESUMEN
Increasing tropical cyclone (TC) pressure on temperate forests is inevitable under the recent global increase of the intensity and poleward migration of TCs. However, the long-term effects of TCs on large-scale structure and diversity of temperate forests remain unclear. Here, we aim to ascertain the legacy of TCs on forest structure and tree species richness by using structural equation models that consider several environmental gradients and use an extensive dataset containing >140,000 plots with >3 million trees from natural temperate forests across eastern United States impacted by TCs. We found that high TC activity (a combination of TC frequency and intensity) leads to a decrease in maximum tree sizes (height and diameter), an increase in tree density and basal area, and a decline in the number of tree species and recruits. We identified TC activity as the strongest predictor of forest structure and species richness in xeric (dry) forests, while it had a weaker impact on hydric (wet) forests. We highlight the sensitivity of forest structure and tree species richness to impacts of likely further increase of TC activity in interaction with climate extremes, especially drought. Our results show that increased TC activity leads to the homogenization of forest structure and reduced tree species richness in U.S. temperate forests. These findings suggest that further declines in tree species richness may be expected because of the projected increase of future levels of TC activity.
Asunto(s)
Tormentas Ciclónicas , Árboles , Estados Unidos , Biodiversidad , Bosques , ClimaRESUMEN
Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink relations across biomes by combining eddy-covariance gross primary production with extensive on-site and regional tree ring observations. We found widespread temporal decoupling between carbon assimilation and tree growth, underpinned by contrasting climatic sensitivities of these two processes. Substantial differences in assimilation-growth decoupling between angiosperms and gymnosperms were determined, as well as stronger decoupling with canopy closure, aridity, and decreasing temperatures. Our results reveal pervasive sink control over tree growth that is likely to be increasingly prominent under global climate change.
Asunto(s)
Secuestro de Carbono , Bosques , Árboles , Árboles/crecimiento & desarrolloAsunto(s)
Árboles , Agua , Isótopos de Carbono , Cambio Climático , Bosques , Árboles/crecimiento & desarrolloRESUMEN
A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.