Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(23): 4996-5014.e24, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949056

RESUMEN

A formal demonstration that mammalian pluripotent stem cells possess preimplantation embryonic cell-like (naive) pluripotency is the generation of chimeric animals through early embryo complementation with homologous cells. Whereas such naive pluripotency has been well demonstrated in rodents, poor chimerism has been achieved in other species including non-human primates due to the inability of the donor cells to match the developmental state of the host embryos. Here, we have systematically tested various culture conditions for establishing monkey naive embryonic stem cells and optimized the procedures for chimeric embryo culture. This approach generated an aborted fetus and a live chimeric monkey with high donor cell contribution. A stringent characterization pipeline demonstrated that donor cells efficiently (up to 90%) incorporated into various tissues (including the gonads and placenta) of the chimeric monkeys. Our results have major implications for the study of primate naive pluripotency and genetic engineering of non-human primates.


Asunto(s)
Células Madre Embrionarias , Ingeniería Genética , Haplorrinos , Animales , Femenino , Embarazo , Haplorrinos/genética , Nacimiento Vivo , Mamíferos , Células Madre Pluripotentes , Primates , Ingeniería Genética/métodos
2.
Cell ; 185(10): 1777-1792.e21, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35512705

RESUMEN

Spatially resolved transcriptomic technologies are promising tools to study complex biological processes such as mammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of current methodologies precludes their systematic application to analyze relatively large and three-dimensional mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.


Asunto(s)
Organogénesis , Transcriptoma , Animales , ADN/genética , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica/métodos , Mamíferos/genética , Ratones , Organogénesis/genética , Embarazo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma/genética
3.
Nat Immunol ; 21(11): 1408-1420, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32868930

RESUMEN

B lymphocyte development and selection are central to adaptive immunity and self-tolerance. These processes require B cell receptor (BCR) signaling and occur in bone marrow, an environment with variable hypoxia, but whether hypoxia-inducible factor (HIF) is involved is unknown. We show that HIF activity is high in human and murine bone marrow pro-B and pre-B cells and decreases at the immature B cell stage. This stage-specific HIF suppression is required for normal B cell development because genetic activation of HIF-1α in murine B cells led to reduced repertoire diversity, decreased BCR editing and developmental arrest of immature B cells, resulting in reduced peripheral B cell numbers. HIF-1α activation lowered surface BCR, CD19 and B cell-activating factor receptor and increased expression of proapoptotic BIM. BIM deletion rescued the developmental block. Administration of a HIF activator in clinical use markedly reduced bone marrow and transitional B cells, which has therapeutic implications. Together, our work demonstrates that dynamic regulation of HIF-1α is essential for normal B cell development.


Asunto(s)
Linfocitos B/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Linfopoyesis/genética , Animales , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Biomarcadores , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cadenas Ligeras de Inmunoglobulina/genética , Inmunofenotipificación , Ratones , Ratones Noqueados , Edición de ARN , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Activación Transcripcional
5.
Nature ; 605(7909): 315-324, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35314832

RESUMEN

After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.


Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Células Madre Pluripotentes , Cigoto , Humanos , Proteínas Cromosómicas no Histona/genética , Embrión de Mamíferos/citología , Proteínas de Homeodominio/genética , Células Madre Pluripotentes/citología , Factores de Transcripción/genética , Cigoto/citología
6.
Nature ; 565(7740): 511-515, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30651640

RESUMEN

Endochondral ossification, an important process in vertebrate bone formation, is highly dependent on correct functioning of growth plate chondrocytes1. Proliferation of these cells determines longitudinal bone growth and the matrix deposited provides a scaffold for future bone formation. However, these two energy-dependent anabolic processes occur in an avascular environment1,2. In addition, the centre of the expanding growth plate becomes hypoxic, and local activation of the hypoxia-inducible transcription factor HIF-1α is necessary for chondrocyte survival by unidentified cell-intrinsic mechanisms3-6. It is unknown whether there is a requirement for restriction of HIF-1α signalling in the other regions of the growth plate and whether chondrocyte metabolism controls cell function. Here we show that prolonged HIF-1α signalling in chondrocytes leads to skeletal dysplasia by interfering with cellular bioenergetics and biosynthesis. Decreased glucose oxidation results in an energy deficit, which limits proliferation, activates the unfolded protein response and reduces collagen synthesis. However, enhanced glutamine flux increases α-ketoglutarate levels, which in turn increases proline and lysine hydroxylation on collagen. This metabolically regulated collagen modification renders the cartilaginous matrix more resistant to protease-mediated degradation and thereby increases bone mass. Thus, inappropriate HIF-1α signalling results in skeletal dysplasia caused by collagen overmodification, an effect that may also contribute to other diseases involving the extracellular matrix such as cancer and fibrosis.


Asunto(s)
Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Condrocitos/metabolismo , Colágeno/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Cartílago/metabolismo , Matriz Extracelular/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Placa de Crecimiento/metabolismo , Hidroxilación , Prolina Dioxigenasas del Factor Inducible por Hipoxia/deficiencia , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Ácidos Cetoglutáricos/metabolismo , Lisina/metabolismo , Masculino , Ratones , Osteogénesis , Oxidación-Reducción , Prolina/metabolismo
8.
PLoS Genet ; 13(3): e1006620, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28267784

RESUMEN

Tubulointerstitial kidney disease is an important cause of progressive renal failure whose aetiology is incompletely understood. We analysed a large pedigree with maternally inherited tubulointerstitial kidney disease and identified a homoplasmic substitution in the control region of the mitochondrial genome (m.547A>T). While mutations in mtDNA coding sequence are a well recognised cause of disease affecting multiple organs, mutations in the control region have never been shown to cause disease. Strikingly, our patients did not have classical features of mitochondrial disease. Patient fibroblasts showed reduced levels of mitochondrial tRNAPhe, tRNALeu1 and reduced mitochondrial protein translation and respiration. Mitochondrial transfer demonstrated mitochondrial transmission of the defect and in vitro assays showed reduced activity of the heavy strand promoter. We also identified further kindreds with the same phenotype carrying a homoplasmic mutation in mitochondrial tRNAPhe (m.616T>C). Thus mutations in mitochondrial DNA can cause maternally inherited renal disease, likely mediated through reduced function of mitochondrial tRNAPhe.


Asunto(s)
ADN Mitocondrial/genética , Enfermedades Renales/genética , Túbulos Renales/patología , Mutación , Acetilglucosaminidasa/orina , Biopsia , Femenino , Fibroblastos/metabolismo , Ligamiento Genético , Humanos , Leucina/química , Masculino , Mitocondrias/metabolismo , Consumo de Oxígeno , Linaje , Fenotipo , Fenilalanina/química , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Músculo Cuádriceps/patología , ARN de Transferencia/genética
9.
J Biol Chem ; 292(11): 4755-4763, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28053091

RESUMEN

Hereditary tyrosinemia type 1 (HT1) is a severe human autosomal recessive disorder caused by the deficiency of fumarylacetoacetate hydroxylase (FAH), an enzyme catalyzing the last step in the tyrosine degradation pathway. Lack of FAH causes accumulation of toxic metabolites (fumarylacetoacetate and succinylacetone) in blood and tissues, ultimately resulting in severe liver and kidney damage with onset that ranges from infancy to adolescence. This tissue damage is lethal but can be controlled by administration of 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), which inhibits tyrosine catabolism upstream of the generation of fumarylacetoacetate and succinylacetone. Notably, in animals lacking FAH, transient withdrawal of NTBC can be used to induce liver damage and a concomitant regenerative response that stimulates the growth of healthy hepatocytes. Among other things, this model has raised tremendous interest for the in vivo expansion of human primary hepatocytes inside these animals and for exploring experimental gene therapy and cell-based therapies. Here, we report the generation of FAH knock-out rabbits via pronuclear stage embryo microinjection of transcription activator-like effector nucleases. FAH-/- rabbits exhibit phenotypic features of HT1 including liver and kidney abnormalities but additionally develop frequent ocular manifestations likely caused by local accumulation of tyrosine upon NTBC administration. We also show that allogeneic transplantation of wild-type rabbit primary hepatocytes into FAH-/- rabbits enables highly efficient liver repopulation and prevents liver insufficiency and death. Because of significant advantages over rodents and their ease of breeding, maintenance, and manipulation compared with larger animals including pigs, FAH-/- rabbits are an attractive alternative for modeling the consequences of HT1.


Asunto(s)
Hidrolasas/genética , Tirosinemias/genética , Animales , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Hepatocitos/trasplante , Humanos , Hidrolasas/metabolismo , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Fallo Hepático/etiología , Fallo Hepático/metabolismo , Fallo Hepático/patología , Fallo Hepático/terapia , Masculino , Conejos , Tirosinemias/complicaciones , Tirosinemias/metabolismo , Tirosinemias/patología
11.
Kidney Int ; 92(4): 900-908, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28506759

RESUMEN

Complement C1q is part of the C1 macromolecular complex that mediates the classical complement activation pathway: a major arm of innate immune defense. C1q is composed of A, B, and C chains that require post-translational prolyl 4-hydroxylation of their N-terminal collagen-like domain to enable the formation of the functional triple helical multimers. The prolyl 4-hydroxylase(s) that hydroxylate C1q have not previously been identified. Recognized prolyl 4-hydroxylases include collagen prolyl-4-hydroxylases (CP4H) and the more recently described prolyl hydroxylase domain (PHD) enzymes that act as oxygen sensors regulating hypoxia-inducible factor (HIF). We show that several small-molecule prolyl hydroxylase inhibitors that activate HIF also potently suppress C1q secretion by human macrophages. However, reducing oxygenation to a level that activates HIF does not compromise C1q hydroxylation. In vitro studies showed that a C1q A chain peptide is not a substrate for PHD2 but is a substrate for CP4H1. Circulating levels of C1q did not differ between wild-type mice or mice with genetic deficits in PHD enzymes, but were reduced by prolyl hydroxylase inhibitors. Thus, C1q is hydroxylated by CP4H, but not the structurally related PHD hydroxylases. Hence, reduction of C1q levels may be an important off-target side effect of small molecule PHD inhibitors developed as treatments for renal anemia.


Asunto(s)
Complemento C1q/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Macrófagos/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Inhibidores de Prolil-Hidroxilasa/farmacología , Anemia/tratamiento farmacológico , Anemia/etiología , Animales , Línea Celular , Complemento C1q/análisis , Vía Clásica del Complemento , Femenino , Humanos , Hidroxilación , Enfermedades Renales/sangre , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Procolágeno-Prolina Dioxigenasa/antagonistas & inhibidores , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Procesamiento Proteico-Postraduccional
12.
Lancet ; 388(10062): e24-e27, 2016 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-27726950

RESUMEN

Brexit and the troubled state of the NHS call for re-thinking the UK's approach to health. The EU referendum vote reveals deep social divisions as well as presenting the country with important decisions and negotiations about the future. At the same time, health problems are growing; the NHS faces severe financial constraints and appears to lurch from crisis to crisis, with leaving the European Union likely to exacerbate many problems including staffing issues across the whole sector. However, new scientific developments and digital technology offer societies everywhere massive and unprecedented opportunities for improving health. It is vital for the country that the NHS is able to adopt these discoveries and see them translated into improved patient care and population health, but also that the UK benefits from its capabilities and strengths in these areas.


Asunto(s)
Investigación Biomédica/organización & administración , Atención a la Salud/organización & administración , Política de Salud/tendencias , Promoción de la Salud/organización & administración , Servicios de Salud Comunitaria , Servicios de Atención de Salud a Domicilio , Humanos , Atención Dirigida al Paciente/métodos , Medicina Estatal , Reino Unido
13.
Curr Genet ; 62(2): 277-82, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26581630

RESUMEN

Retrotransposons are activated as organisms age, based on work from several model systems. Since these mobile DNA elements can promote genome instability, this has raised the possibility that they can contribute to loss of cellular function with age. Many questions remain to be addressed about the relationship between retrotransposons and aging, so it is unclear if changes in their activity will be found to contribute to aging or to be a consequence of aging. A few broad perspectives are presented regarding how continued work on these elements could provide important insights into the aging process, regardless of whether their mobility is ultimately found to significantly contribute to reduced lifespan and healthspan.


Asunto(s)
Envejecimiento , Retroelementos , Animales , Humanos
14.
J Pediatr ; 174: 204-210.e1, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27174143

RESUMEN

OBJECTIVE: To characterize the phenotypes of Dent disease in Chinese children and their heterozygous mothers and to establish genetic diagnoses. STUDY DESIGN: Using a modified protocol, we screened 1288 individuals with proteinuria. A diagnosis of Dent disease was established in 19 boys from 16 families by the presence of loss of function/deleterious mutations in CLCN5 or OCRL1. We also analyzed 16 available patients' mothers and examined their pregnancy records. RESULTS: We detected 14 loss of function/deleterious mutations of CLCN5 in 15 boys and 2 mutations of OCRL1 in 4 boys. Of the patients, 16 of 19 had been wrongly diagnosed with other diseases and 11 of 19 had incorrect or unnecessary treatment. None of the patients, but 6 of 14 mothers, had nephrocalcinosis or nephrolithiasis at diagnosis. Of the patients, 8 of 14 with Dent disease 1 were large for gestational age (>90th percentile); 8 of 15 (53.3%) had rickets. We also present predicted structural changes for 4 mutant proteins. CONCLUSIONS: Pediatric Dent disease often is misdiagnosed; genetic testing achieves a correct diagnosis. Nephrocalcinosis or nephrolithiasis may not be sensitive diagnostic criteria. We identified 10 novel mutations in CLCN5 and OCRL1. The possibility that altered CLCN5 function could affect fetal growth and a possible link between a high rate of rickets and low calcium intake are discussed.


Asunto(s)
Pueblo Asiatico/genética , Canales de Cloruro/genética , Enfermedad de Dent/diagnóstico , Enfermedad de Dent/genética , Mutación/genética , Monoéster Fosfórico Hidrolasas/genética , Adolescente , Adulto , Niño , Preescolar , China , Femenino , Desarrollo Fetal/genética , Heterocigoto , Humanos , Masculino , Madres , Fenotipo
15.
BMC Genet ; 17(1): 140, 2016 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-27769161

RESUMEN

BACKGROUND: Accumulation of DNA damage, mutations, and chromosomal abnormalities is associated with aging in many organisms. How directly various forms of genomic instability contribute to lifespan in different aging contexts is still under active investigation. Testing whether treatments that alter lifespan change mutation rates early during lifespan could provide support for genomic instability being at least partly responsible for changes in the rates of aging. RESULTS: Rates of mutations, direct repeat recombination, or retrotransposition were measured in young cell populations from two strain backgrounds of Saccharomyces cerevisiae exposed to several growth conditions that shortened or extended yeast chronological lifespan. In most cases, rates of genomic instability did not consistently increase in young cells exposed to lifespan-shortening conditions or decrease in young cells exposed to lifespan-extending conditions. The mutation rate for a copy of the CAN1 gene integrated onto the right arm of chromosome VIII did show expected increases or decreases in young cells in the lifespan-altering growth conditions. These mutations were determined to frequently result from non-allelic recombination events, including non-reciprocal translocations, and were more strongly stimulated by using hydroxyurea to induce DNA replication stress than by the general DNA-damaging agent methyl methanesulfonate. CONCLUSIONS: The results are not consistent with changes in mutation rates in general mediating the influence of alternative growth conditions on yeast lifespan. The strong correlation between non-allelic recombination events and the effects of the alternative growth conditions on lifespan indicates that genomic instability due to changes in recombination rates may directly contribute to the rate of aging or that lifespan-altering treatments may consistently increase or decrease DNA replication stress. These results further support the connection between DNA replication stress and aging observed in multiple organisms. Chromosomal abnormalities that likely arise from recombination events are more prevalent in multiple human tissues with increasing age, and further work in yeast could help to define mechanisms responsible for this observation and the impact of chromosomal abnormalities on aging.


Asunto(s)
Saccharomyces cerevisiae/fisiología , Eliminación de Secuencia , Translocación Genética , Aberraciones Cromosómicas , Inestabilidad Genómica , Viabilidad Microbiana , Mutación , Retroelementos , Proteínas de Saccharomyces cerevisiae/genética
16.
Nephrol Dial Transplant ; 31(11): 1908-1914, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27190376

RESUMEN

BACKGROUND: Hereditary microscopic haematuria often segregates with mutations of COL4A3, COL4A4 or COL4A5 but in half of families a gene is not identified. We investigated a Cypriot family with autosomal dominant microscopic haematuria with renal failure and kidney cysts. METHODS: We used genome-wide linkage analysis, whole exome sequencing and cosegregation analyses. RESULTS: We identified a novel frameshift mutation, c.4611_4612insG:p.T1537fs, in exon 49 of COL4A1. This mutation predicts truncation of the protein with disruption of the C-terminal part of the NC1 domain. We confirmed its presence in 20 family members, 17 with confirmed haematuria, 5 of whom also had stage 4 or 5 chronic kidney disease. Eleven family members exhibited kidney cysts (55% of those with the mutation), but muscle cramps or cerebral aneurysms were not observed and serum creatine kinase was normal in all individuals tested. CONCLUSIONS: Missense mutations of COL4A1 that encode the CB3 [IV] segment of the triple helical domain (exons 24 and 25) are associated with HANAC syndrome (hereditary angiopathy, nephropathy, aneurysms and cramps). Missense mutations of COL4A1 that disrupt the NC1 domain are associated with antenatal cerebral haemorrhage and porencephaly, but not kidney disease. Our findings extend the spectrum of COL4A1 mutations linked with renal disease and demonstrate that the highly conserved C-terminal part of the NC1 domain of the α1 chain of type IV collagen is important in the integrity of glomerular basement membrane in humans.


Asunto(s)
Colágeno Tipo IV/genética , ADN/genética , Mutación del Sistema de Lectura , Nefritis Hereditaria/genética , Colágeno Tipo IV/metabolismo , Análisis Mutacional de ADN , Femenino , Ligamiento Genético , Genotipo , Humanos , Masculino , Nefritis Hereditaria/metabolismo , Linaje , Reacción en Cadena de la Polimerasa
17.
J Biol Chem ; 289(6): 3339-51, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24371136

RESUMEN

Megadose vitamin C (Vc) is one of the most enduring alternative treatments for diverse human diseases and is deeply engrafted in popular culture. Preliminary studies in the 1970s described potent effects of Vc on prolonging the survival of patients with terminal cancer, but these claims were later criticized. An improved knowledge of the pharmacokinetics of Vc and recent reports using cancer cell lines have renewed the interest in this subject. Despite these findings, using Vc as an adjuvant for anticancer therapy remains questionable, among other things because there is no proper mechanistic understanding. Here, we show that a Warburg effect triggered by activation of the hypoxia-inducible factor (HIF) pathway greatly enhances Vc-induced toxicity in multiple cancer cell lines, including von Hippel-Lindau (VHL)-defective renal cancer cells. HIF increases the intracellular uptake of oxidized Vc through its transcriptional target glucose transporter 1 (GLUT1), synergizing with the uptake of its reduced form through sodium-dependent Vc transporters. The resulting high levels of intracellular Vc induce oxidative stress and massive DNA damage, which then causes metabolic exhaustion by depleting cellular ATP reserves. HIF-positive cells are particularly sensitive to Vc-induced ATP reduction because they mostly rely on the rather inefficient glycolytic pathway for energy production. Thus, our experiments link Vc-induced toxicity and cancer metabolism, providing a new explanation for the preferential effect of Vc on cancer cells.


Asunto(s)
Ácido Ascórbico/farmacología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Citotoxinas/farmacología , Daño del ADN , Neoplasias/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Estrés Oxidativo/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
18.
BMC Genomics ; 16: 163, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25888400

RESUMEN

BACKGROUND: The ability to identify regions of the genome inherited with a dominant trait in one or more families has become increasingly valuable with the wide availability of high throughput sequencing technology. While a number of methods exist for mapping of homozygous variants segregating with recessive traits in consanguineous families, dominant conditions are conventionally analysed by linkage analysis, which requires computationally demanding haplotype reconstruction from marker genotypes and, even using advanced parallel approximation implementations, can take substantial time, particularly for large pedigrees. In addition, linkage analysis lacks sensitivity in the presence of phenocopies (individuals sharing the trait but not the genetic variant responsible). Combinatorial Conflicting Homozygosity (CCH) analysis uses high density biallelic single nucleotide polymorphism (SNP) marker genotypes to identify genetic loci within which consecutive markers are not homozygous for different alleles. This allows inference of identical by descent (IBD) inheritance of a haplotype among a set or subsets of related or unrelated individuals. RESULTS: A single genome-wide conflicting homozygosity analysis takes <3 seconds and parallelisation permits multiple combinations of subsets of individuals to be analysed quickly. Analysis of unrelated individuals demonstrated that in the absence of IBD inheritance, runs of no CH exceeding 4 cM are not observed. At this threshold, CCH is >97% sensitive and specific for IBD regions within a pedigree exceeding this length and was able to identify the locus responsible for a dominantly inherited kidney disease in a Turkish Cypriot family in which six out 17 affected individuals were phenocopies. It also revealed shared ancestry at the disease-linked locus among affected individuals from two different Cypriot populations. CONCLUSIONS: CCH does not require computationally demanding haplotype reconstruction and can detect regions of shared inheritance of a haplotype among subsets of related or unrelated individuals directly from SNP genotype data. In contrast to parametric linkage allowing for phenocopies, CCH directly provides the exact number and identity of individuals sharing each locus. CCH can also identify regions of shared ancestry among ostensibly unrelated individuals who share a trait. CCH is implemented in Python and is freely available (as source code) from http://sourceforge.net/projects/cchsnp/ .


Asunto(s)
Genes Dominantes , Genómica/métodos , Fenotipo , Algoritmos , Ligamiento Genético , Genotipo , Homocigoto , Humanos , Enfermedades Renales/genética , Desequilibrio de Ligamiento , Linaje , Polimorfismo de Nucleótido Simple , Recombinación Genética
19.
Development ; 139(13): 2340-50, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627278

RESUMEN

Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature.


Asunto(s)
Ojo/crecimiento & desarrollo , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/fisiología , Animales , Aniridia/genética , Aniridia/patología , Apoptosis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Proliferación Celular , Electrorretinografía , Eritropoyetina/metabolismo , Ojo/irrigación sanguínea , Ojo/citología , Eliminación de Gen , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microftalmía/genética , Microftalmía/patología , Epitelio Pigmentado de la Retina/citología , Factor A de Crecimiento Endotelial Vascular/análisis , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
20.
Circ Res ; 112(12): 1583-91, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23564640

RESUMEN

RATIONALE: Hypoxia followed by reoxygenation promotes inflammation by activating nuclear factor κB transcription factors in endothelial cells (ECs). This process involves modification of the signaling intermediary tumor necrosis factor receptor-associated factor 6 with polyubiquitin chains. Thus, cellular mechanisms that suppress tumor necrosis factor receptor-associated factor 6 ubiquitination are potential therapeutic targets to reduce inflammation in hypoxic tissues. OBJECTIVE: In this study, we tested the hypothesis that endothelial activation in response to hypoxia-reoxygenation can be influenced by Cezanne, a deubiquitinating enzyme that cleaves ubiquitin from specific modified proteins. METHODS AND RESULTS: Studies of cultured ECs demonstrated that hypoxia (1% oxygen) induced Cezanne via p38 mitogen-activated protein kinase-dependent transcriptional and post-transcriptional mechanisms. Hypoxia-reoxygenation had minimal effects on proinflammatory signaling in unmanipulated ECs but significantly enhanced Lys63 polyubiquitination of tumor necrosis factor receptor-associated factor 6, activation of nuclear factor κB, and expression of inflammatory genes after silencing of Cezanne. Thus, although hypoxia primed cells for inflammatory activation, it simultaneously induced Cezanne, which impeded signaling to nuclear factor κB by suppressing tumor necrosis factor receptor-associated factor 6 ubiquitination. Similarly, ischemia induced Cezanne in the murine kidney in vascular ECs, glomerular ECs, podocytes, and epithelial cells, and genetic deletion of Cezanne enhanced renal inflammation and injury in murine kidneys exposed to ischemia followed by reperfusion. CONCLUSIONS: We conclude that inflammatory responses to ischemia are controlled by a balance between ubiquitination and deubiquitination, and that Cezanne is a key regulator of this process. Our observations have important implications for therapeutic targeting of inflammation and injury during ischemia-reperfusion.


Asunto(s)
Endopeptidasas/metabolismo , Células Endoteliales/enzimología , Inflamación/prevención & control , Riñón/irrigación sanguínea , Daño por Reperfusión/enzimología , Factor 6 Asociado a Receptor de TNF/metabolismo , Animales , Hipoxia de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Endopeptidasas/deficiencia , Endopeptidasas/genética , Células Endoteliales/inmunología , Humanos , Inflamación/enzimología , Inflamación/genética , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Oxígeno/metabolismo , Interferencia de ARN , Ratas , Ratas Endogámicas F344 , Daño por Reperfusión/genética , Daño por Reperfusión/inmunología , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/genética , Factores de Tiempo , Transcripción Genética , Transfección , Ubiquitinación , Regulación hacia Arriba , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA