Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Biol ; 21(12): e3002402, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048369

RESUMEN

Vision impairment places a serious burden on the aging society, affecting the lives of millions of people. Many retinal diseases are of genetic origin, of which over 50% are due to mutations in cilia-associated genes. Most research on retinal degeneration has focused on the ciliated photoreceptor cells of the retina. However, the contribution of primary cilia in other ocular cell types has largely been ignored. The retinal pigment epithelium (RPE) is a monolayer epithelium at the back of the eye intricately associated with photoreceptors and essential for visual function. It is already known that primary cilia in the RPE are critical for its development and maturation; however, it remains unclear whether this affects RPE function and retinal tissue homeostasis. We generated a conditional knockout mouse model, in which IFT20 is exclusively deleted in the RPE, ablating primary cilia. This leads to defective RPE function, followed by photoreceptor degeneration and, ultimately, vision impairment. Transcriptomic analysis offers insights into mechanisms underlying pathogenic changes, which include transcripts related to epithelial homeostasis, the visual cycle, and phagocytosis. Due to the loss of cilia exclusively in the RPE, this mouse model enables us to tease out the functional role of RPE cilia and their contribution to retinal degeneration, providing a powerful tool for basic and translational research in syndromic and non-syndromic retinal degeneration. Non-ciliary mechanisms of IFT20 in the RPE may also contribute to pathogenesis and cannot be excluded, especially considering the increasing evidence of non-ciliary functions of ciliary proteins.


Asunto(s)
Degeneración Retiniana , Epitelio Pigmentado de la Retina , Animales , Humanos , Ratones , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cilios/genética , Cilios/metabolismo , Modelos Animales de Enfermedad , Epitelio , Ratones Noqueados , Retina , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/metabolismo
2.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498834

RESUMEN

The primary cilium is an organelle with a central role in cellular signal perception. Mutations in genes that encode cilia-associated proteins result in a collection of human syndromes collectively termed ciliopathies. Of these, the Bardet-Biedl syndrome (BBS) is considered one of the archetypical ciliopathies, as patients exhibit virtually all respective clinical phenotypes, such as pathological changes of the retina or the kidney. However, the behavioral phenotype associated with ciliary dysfunction has received little attention thus far. Here, we extensively characterized the behavior of two rodent models of BBS, Bbs6/Mkks, and Bbs8/Ttc8 knockout mice concerning social behavior, anxiety, and cognitive abilities. While learning tasks remained unaffected due to the genotype, we observed diminished social behavior and altered communication. Additionally, Bbs knockout mice displayed reduced anxiety. This was not due to altered adrenal gland function or corticosterone serum levels. However, hypothalamic expression of Lsamp, the limbic system associated protein, and Adam10, a protease acting on Lsamp, were reduced. This was accompanied by changes in characteristics of adult hypothalamic neurosphere cultures. In conclusion, we provide evidence that behavioral changes in Bbs knockout mice are mainly found in social and anxiety traits and might be based on an altered architecture of the hypothalamus.


Asunto(s)
Síndrome de Bardet-Biedl , Ratones , Adulto , Animales , Femenino , Humanos , Síndrome de Bardet-Biedl/metabolismo , Ratones Noqueados , Proteínas/metabolismo , Cilios/metabolismo , Comunicación , Proteínas del Citoesqueleto/metabolismo
3.
BMC Genomics ; 22(1): 62, 2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468057

RESUMEN

BACKGROUND: Next Generation Sequencing (NGS) is the fundament of various studies, providing insights into questions from biology and medicine. Nevertheless, integrating data from different experimental backgrounds can introduce strong biases. In order to methodically investigate the magnitude of systematic errors in single nucleotide variant calls, we performed a cross-sectional observational study on a genomic cohort of 99 subjects each sequenced via (i) Illumina HiSeq X, (ii) Illumina HiSeq, and (iii) Complete Genomics and processed with the respective bioinformatic pipeline. We also repeated variant calling for the Illumina cohorts with GATK, which allowed us to investigate the effect of the bioinformatics analysis strategy separately from the sequencing platform's impact. RESULTS: The number of detected variants/variant classes per individual was highly dependent on the experimental setup. We observed a statistically significant overrepresentation of variants uniquely called by a single setup, indicating potential systematic biases. Insertion/deletion polymorphisms (indels) were associated with decreased concordance compared to single nucleotide polymorphisms (SNPs). The discrepancies in indel absolute numbers were particularly prominent in introns, Alu elements, simple repeats, and regions with medium GC content. Notably, reprocessing sequencing data following the best practice recommendations of GATK considerably improved concordance between the respective setups. CONCLUSION: We provide empirical evidence of systematic heterogeneity in variant calls between alternative experimental and data analysis setups. Furthermore, our results demonstrate the benefit of reprocessing genomic data with harmonized pipelines when integrating data from different studies.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Estudios Transversales , Genómica , Humanos , Polimorfismo de Nucleótido Simple , Reproducibilidad de los Resultados
4.
Biol Cell ; 112(2): 39-52, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31845361

RESUMEN

BACKGROUND INFORMATION: Primary cilia are highly conserved multifunctional cell organelles that extend from the cell membrane. A range of genetic disorders, collectively termed ciliopathies, is attributed to primary cilia dysfunction. The archetypical ciliopathy is the Bardet-Biedl syndrome (BBS), patients of which display virtually all symptoms associated with dysfunctional cilia. The primary cilium acts as a sensory organelle transmitting intra- and extracellular signals thereby transducing various signalling pathways facilitated by the BBS proteins. Growing evidence suggests that cilia proteins also have alternative functions in ciliary independent mechanisms, which might be contributing to disease etiology. RESULTS: In an attempt to gain more insight into possible differences in organ specific roles, we examined whether relative gene expression for individual Bbs genes was constant across different tissues in mouse, in order to distinguish possible differences in organ specific roles. All tested tissues show differentially expressed Bbs transcripts with some tissues showing a more similar stoichiometric composition of transcripts than others do.  However, loss of Bbs6 or Bbs8 affects expression of other Bbs transcripts in a tissue-dependent way. CONCLUSIONS AND SIGNIFICANCE: Our data support the hypothesis that in some organs, BBS proteins not only function in a complex but might also have alternative functions in a ciliary independent context. This significantly alters our understanding of disease pathogenesis and development of possible treatment strategies.


Asunto(s)
Síndrome de Bardet-Biedl , Regulación de la Expresión Génica , Transducción de Señal/genética , Animales , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Síndrome de Bardet-Biedl/patología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Especificidad de Órganos/genética
5.
Cell Mol Life Sci ; 76(4): 757-775, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30446775

RESUMEN

Primary cilia are conserved organelles that mediate cellular communication crucial for organogenesis and homeostasis in numerous tissues. The retinal pigment epithelium (RPE) is a ciliated monolayer in the eye that borders the retina and is vital for visual function. Maturation of the RPE is absolutely critical for visual function and the role of the primary cilium in this process has been largely ignored to date. We show that primary cilia are transiently present during RPE development and that as the RPE matures, primary cilia retract, and gene expression of ciliary disassembly components decline. We observe that ciliary-associated BBS proteins protect against HDAC6-mediated ciliary disassembly via their recruitment of Inversin to the base of the primary cilium. Inhibition of ciliary disassembly components was able to rescue ciliary length defects in BBS deficient cells. This consequently affects ciliary regulation of Wnt signaling. Our results shed light onto the mechanisms by which cilia-mediated signaling facilitates tissue maturation.


Asunto(s)
Cilios/metabolismo , Chaperoninas del Grupo II/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Cilios/genética , Proteínas del Citoesqueleto , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Chaperoninas del Grupo II/genética , Células HEK293 , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética , Interferencia de ARN , Epitelio Pigmentado de la Retina/embriología , Epitelio Pigmentado de la Retina/ultraestructura , Vía de Señalización Wnt/genética
6.
Klin Monbl Augenheilkd ; 237(3): 248-258, 2020 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-32182629

RESUMEN

The retinal pigment epithelium (RPE) is a highly polarized single layer of block-shaped epithelial cells that are densely packed with melanin. They lie between the light sensitive external segments of the photoreceptors and the choroid. They play an essential role in the development of photoreceptors and have important functions in nutrient supply and maintenance, in retinal metabolism and in shielding the blood supply of the choroid. The photoreceptors are subject to daily renewal, in which 10% of the external segments are phagocytosed by the retinal pigment epithelium. This requires close interactions between the retinal pigment epithelium and the retina. Thus, disturbance or delay of the maturation of the RPE can trigger pathogenic changes in the retina, leading to degeneration of the photoreceptors. The aging of the RPE can also impair underlying functions, which can lead to progressive loss of photoreceptors and visual acuity. Like many types of ocular cells, the RPE forms a primary cilium during its development, a protuberance of the cell membrane based on microtubuli. This is thought to be associated with some important cellular processes and various important signaling pathways. In particular, the WNT pathway (wingless-related integration site) is essential for the polarization and maturation of the RPE and therefore of decisive importance for the function of the epithelium.


Asunto(s)
Epitelio Pigmentado de la Retina , Vía de Señalización Wnt , Coroides , Retina , Visión Ocular
7.
iScience ; 26(4): 106410, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37034981

RESUMEN

The eukaryotic BBSome is a transport complex within cilia and assembled by chaperonin-like BBS proteins. Recent work indicates nuclear functions for BBS proteins in mammals, but it is unclear how common these are in extant proteins or when they evolved. We screened for BBS orthologues across a diverse set of eukaryotes, consolidated nuclear association via signal sequence predictions and permutation analysis, and validated nuclear localization in mammalian cells via fractionation and immunocytochemistry. BBS proteins are-with exceptions-conserved as a set in ciliated species. Predictions highlight five most likely nuclear proteins and suggest that nuclear roles evolved independently of nuclear access during mitosis. Nuclear localization was confirmed in human cells. These findings suggest that nuclear BBS functions are potentially not restricted to mammals, but may be a common frequently co-opted eukaryotic feature. Understanding the functional spectrum of BBS proteins will help elucidating their role in gene regulation, development, and disease.

8.
J Mol Cell Biol ; 15(4)2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37015875

RESUMEN

Primary cilia are microtubule-based cell organelles important for cellular communication. Since they are involved in the regulation of numerous signalling pathways, defects in cilia development or function are associated with genetic disorders, collectively called ciliopathies. Besides their ciliary functions, recent research has shown that several ciliary proteins are involved in the coordination of the actin cytoskeleton. Although ciliary and actin phenotypes are related, the exact nature of their interconnection remains incompletely understood. Here, we show that the protein BBS6, associated with the ciliopathy Bardet-Biedl syndrome, cooperates with the actin-bundling protein Fascin-1 in regulating filopodia and ciliary signalling. We found that loss of Bbs6 affects filopodia length potentially via attenuated interaction with Fascin-1. Conversely, loss of Fascin-1 leads to a ciliary phenotype, subsequently affecting ciliary Wnt signalling, possibly in collaboration with BBS6. Our data shed light on how ciliary proteins are involved in actin regulations and provide new insight into the involvement of the actin regulator Fascin-1 in ciliogenesis and cilia-associated signalling. Advancing our knowledge of the complex regulations between primary cilia and actin dynamics is important to understand the pathogenic consequences of ciliopathies.


Asunto(s)
Actinas , Ciliopatías , Humanos , Actinas/metabolismo , Vía de Señalización Wnt
9.
Nutrients ; 13(7)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206809

RESUMEN

The gastrointestinal tract is a functionally and anatomically segmented organ that is colonized by microbial communities from birth. While the genetics of mouse gut development is increasingly understood, how nutritional factors and the commensal gut microbiota act in concert to shape tissue organization and morphology of this rapidly renewing organ remains enigmatic. Here, we provide an overview of embryonic mouse gut development, with a focus on the intestinal vasculature and the enteric nervous system. We review how nutrition and the gut microbiota affect the adaptation of cellular and morphologic properties of the intestine, and how these processes are interconnected with innate immunity. Furthermore, we discuss how nutritional and microbial factors impact the renewal and differentiation of the epithelial lineage, influence the adaptation of capillary networks organized in villus structures, and shape the enteric nervous system and the intestinal smooth muscle layers. Intriguingly, the anatomy of the gut shows remarkable flexibility to nutritional and microbial challenges in the adult organism.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/inmunología , Inmunidad Innata , Morfogénesis/fisiología , Estado Nutricional , Simbiosis/fisiología , Animales , Dieta Alta en Grasa , Endotelio/inmunología , Sistema Nervioso Entérico , Células Epiteliales/inmunología , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/microbiología , Homeostasis , Humanos , Mucosa Intestinal/inmunología , Ratones
10.
Front Cell Dev Biol ; 9: 607121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33681195

RESUMEN

Primary cilia are sensory organelles vital for developmental and physiological processes. Their dysfunction causes a range of phenotypes including retinopathies. Although primary cilia have been described in the retinal pigment epithelium (RPE), little is known about their contribution to biological processes within this tissue. Ciliary proteins are increasingly being identified in non-ciliary locations and might carry out additional functions, disruption of which possibly contributes to pathology. The RPE is essential for maintaining photoreceptor cells and visual function. We demonstrate that upon loss of Bbs8, predominantly thought to be a ciliary gene, the RPE shows changes in gene and protein expression initially involved in signaling pathways and developmental processes, and at a later time point RPE homeostasis and function. Differentially regulated molecules affecting the cytoskeleton and cellular adhesion, led to defective cellular polarization and morphology associated with a possible epithelial-to-mesenchymal transition (EMT)-like phenotype. Our data highlights the benefit of combinatorial "omics" approaches with in vivo data for investigating the function of ciliopathy proteins. It also emphasizes the importance of ciliary proteins in the RPE and their contribution to visual disorders, which must be considered when designing treatment strategies for retinal degeneration.

11.
Int J Biochem Cell Biol ; 129: 105877, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33166678

RESUMEN

Primary cilia are microtubule-based sensory cell organelles that are vital for tissue and organ development. They act as an antenna, receiving and transducing signals, enabling communication between cells. Defects in ciliogenesis result in severe genetic disorders collectively termed ciliopathies. In recent years, the importance of the direct and indirect involvement of actin regulators in ciliogenesis came into focus as it was shown that F-actin polymerisation impacts ciliation. The ciliary basal body was further identified as both a microtubule and actin organising centre. In the current review, we summarize recent studies on F-actin in and around primary cilia, focusing on different actin regulators and their effect on ciliogenesis, from the initial steps of basal body positioning and regulation of ciliary assembly and disassembly. Since primary cilia are also involved in several intracellular signalling pathways such as planar cell polarity (PCP), subsequently affecting actin rearrangements, the multiple effectors of this pathway are highlighted in more detail with a focus on the feedback loops connecting actin networks and cilia proteins. Finally, we elucidate the role of actin regulators in the development of ciliopathy symptoms and cancer.


Asunto(s)
Actinas/metabolismo , Cilios/metabolismo , Animales , Retroalimentación Fisiológica , Humanos
12.
Invest Ophthalmol Vis Sci ; 60(4): 1132-1143, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30901771

RESUMEN

Purpose: Bardet-Biedl syndrome (BBS) is an archetypical ciliopathy caused by defective ciliary trafficking and consequent function. Insights gained from BBS mouse models are applicable to other syndromic and nonsyndromic retinal diseases. This progressive characterization of the visual phenotype in three BBS mouse models sets a baseline for testing therapeutic interventions. Methods: Longitudinal acquisition of electroretinograms, optical coherence tomography scans, and visual acuity using the optomotor reflex in Bbs6/Mkks, Bbs8/Ttc8, and Bbs5 knockout mice. Gene and protein expression analysis in vivo and in vitro. Results: Complete loss of BBS5, BBS6, or BBS8 leads to different rates of retinal degeneration and visual function over time. BBS8-deficient mice showed the fastest rate of degeneration, and BBS8 seems to be required for cone photoreceptors to reach functional maturity. In contrast, the loss of BBS5 (a further BBSome component) showed very little degeneration. Loss of BBS8 versus BBS5 resulted in different physiologic responses both in vivo and in vitro. BBS6-deficient mice show a slower rate of degeneration with both rod and cone function reducing at a similar rate. Conclusions: The mouse models analyzed show distinct and diverging courses of degeneration upon loss of BBS5, BBS6, or BBS8, which can be used as a benchmark to test therapeutic interventions. Close consideration of the different phenotypes reveal subtle but important differences relating to their function. Because we also see differences in terms of phenotype depending on the type of visual assessment used, our data highlight the importance of using a combinatorial approach for assessment of visual function.


Asunto(s)
Síndrome de Bardet-Biedl/fisiopatología , Modelos Animales de Enfermedad , Retina/fisiopatología , Degeneración Retiniana/fisiopatología , Visión Ocular/fisiología , Envejecimiento/fisiología , Animales , Síndrome de Bardet-Biedl/genética , Western Blotting , Proteínas Portadoras/genética , Proteínas del Citoesqueleto , Electrorretinografía , Técnicas de Genotipaje , Chaperoninas del Grupo II/genética , Inmunohistoquímica , Ratones , Ratones Noqueados , Ratones Mutantes , Proteínas Asociadas a Microtúbulos/genética , Fenotipo , Proteínas de Unión a Fosfato , Reacción en Cadena en Tiempo Real de la Polimerasa , Degeneración Retiniana/genética , Transducción de Señal/fisiología , Tomografía de Coherencia Óptica
13.
PLoS One ; 13(11): e0207222, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30440011

RESUMEN

The retinal pigment epithelium (RPE) is an epithelial monolayer in the back of the vertebrate eye. RPE dysfunction is associated with retinal degeneration and blindness. In order to fully understand how dysregulation affects visual function, RPE-specific gene knockouts are indispensable. Since the currently available RPE-specific Cre recombinases show lack of specificity or poor recombination, we sought to generate an alternative. We generated a tamoxifen-inducible RPE-specific Cre transgenic mouse line under transcriptional control of an RPE-specific Tyrosinase enhancer. We characterized the Cre-mediated recombinant expression by crossing our RPE-Tyrosinase-CreErT2 mouse line with the tdTomato reporter line, Ai14. Detected fluorescence was quantified via high-content image analysis. Recombination was predominantly observed in the RPE and adjacent ciliary body. RPE flatmount preparations revealed a high level of recombination in adult mice (47.25-69.48%). Regional analysis of dorsal, ventral, nasal and temporal areas did not show significant changes in recombination. However, recombination was higher in the central RPE compared to the periphery. Higher levels of Cre-mediated recombinant expression was observed in embryonic RPE (~83%). Compared to other RPE-specific Cre transgenic mouse lines, this newly generated RPE-Tyrosinase-CreErT2 line shows a more uniform and higher level of recombination with the advantage to initiate recombination in both, prenatal and postnatal animals. This line can serve as a valuable tool for researches exploring the role of individual gene functions, in both developing and differentiated RPE.


Asunto(s)
Ratones Transgénicos , Epitelio Pigmentado de la Retina/metabolismo , Animales , Femenino , Integrasas , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Animales , Monofenol Monooxigenasa/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/crecimiento & desarrollo , Epitelio Pigmentado de la Retina/ultraestructura
14.
Cell Rep ; 22(1): 189-205, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29298421

RESUMEN

Primary cilia are sensory organelles that protrude from the cell membrane. Defects in the primary cilium cause ciliopathy disorders, with retinal degeneration as a prominent phenotype. Here, we demonstrate that the retinal pigment epithelium (RPE), essential for photoreceptor development and function, requires a functional primary cilium for complete maturation and that RPE maturation defects in ciliopathies precede photoreceptor degeneration. Pharmacologically enhanced ciliogenesis in wild-type induced pluripotent stem cells (iPSC)-RPE leads to fully mature and functional cells. In contrast, ciliopathy patient-derived iPSC-RPE and iPSC-RPE with a knockdown of ciliary-trafficking protein remain immature, with defective apical processes, reduced functionality, and reduced adult-specific gene expression. Proteins of the primary cilium regulate RPE maturation by simultaneously suppressing canonical WNT and activating PKCδ pathways. A similar cilium-dependent maturation pathway exists in lung epithelium. Our results provide insights into ciliopathy-induced retinal degeneration, demonstrate a developmental role for primary cilia in epithelial maturation, and provide a method to mature iPSC epithelial cells for clinical applications.


Asunto(s)
Ciliopatías/metabolismo , Degeneración Retiniana/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Animales , Cilios/genética , Cilios/metabolismo , Cilios/patología , Ciliopatías/genética , Ciliopatías/patología , Ciliopatías/terapia , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/trasplante , Ratones , Ratones Noqueados , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Degeneración Retiniana/terapia , Epitelio Pigmentado de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA