Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Helicobacter ; 29(2): e13064, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38459689

RESUMEN

BACKGROUND: Helicobacter pylori (H. pylori) infection is the most extensively studied risk factor for gastric cancer. As with any bacteria, H. pylori will release distinctive odors that result from an emission of volatile metabolic byproducts in unique combinations and proportions. Effectively capturing and identifying these volatiles can pave the way for the development of innovative and non-invasive diagnostic methods for determining infection. Here we characterize the H. pylori volatilomic signature, pinpoint potential biomarkers of its presence, and evaluate the variability of volatilomic signatures between different H. pylori isolates. MATERIALS AND METHODS: Using needle trap extraction, volatiles in the headspace above H. pylori cultures were collected and, following thermal desorption at 290°C in a splitless mode, were analyzed using gas chromatography-mass spectrometry. The resulting volatilomic signatures of H. pylori cultures were compared to those obtained from an analysis of the volatiles in the headspace above the cultivating medium only. RESULTS: Amongst the volatiles detected, 21 showed consistent differences between the bacteria cultures and the cultivation medium, with 11 compounds being elevated and 10 showing decreased levels in the culture's headspace. The 11 elevated volatiles are four ketones (2-pentanone, 5-methyl-3-heptanone, 2-heptanone, and 2-nonanone), three alcohols (2-methyl-1-propanol, 3-methyl-1-butanol, and 1 butanol), one aromatic (styrene), one aldehyde (2-ethyl-hexanal), one hydrocarbon (n-octane), and one sulfur compound (dimethyl disulfide). The 10 volatiles with lower levels in the headspace of the cultures are four aldehydes (2-methylpropanal, benzaldehyde, 3-methylbutanal, and butanal), two heterocyclic compounds (2-ethylfuran and 2-pentylfuran), one ketone (2-butanone), one aromatic (benzene), one alcohol (2-butanol) and bromodichloromethane. Of the volatile species showing increased levels, the highest emissions are found to be for 3-methyl-1-butanol, 1-butanol and dimethyl disulfide. Qualitative variations in their emissions from the different isolates was observed. CONCLUSIONS: The volatiles emitted by H. pylori provide a characteristic volatilome signature that has the potential of being developed as a tool for monitoring infections caused by this pathogen. Furthermore, using the volatilome signature, we are able to differentiate different isolates of H. pylori. However, the volatiles also represent potential confounders for the recognition of gastric cancer volatile markers.


Asunto(s)
Disulfuros , Infecciones por Helicobacter , Helicobacter pylori , Pentanoles , Neoplasias Gástricas , Humanos , Alcoholes
2.
Molecules ; 27(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458579

RESUMEN

Researchers looking for biomarkers from different sources, such as breath, urine, or blood, frequently search for specific patterns of volatile organic compounds (VOCs), often using pattern recognition or machine learning techniques. However, they are not generally aware that these patterns change depending on the source they use. Therefore, we have created a simple model to demonstrate that the distribution patterns of VOCs in fat, mixed venous blood, alveolar air, and end-tidal breath are different. Our approach follows well-established models for the description of dynamic real-time breath concentration profiles. We start with a uniform distribution of end-tidal concentrations of selected VOCs and calculate the corresponding target concentrations. For this, we only need partition coefficients, mass balance, and the assumption of an equilibrium state, which avoids the need to know the volatiles' metabolic rates and production rates within the different compartments.


Asunto(s)
Líquidos Corporales , Compuestos Orgánicos Volátiles , Biomarcadores , Líquidos Corporales/química , Pruebas Respiratorias/métodos , Compuestos Orgánicos Volátiles/análisis
3.
Molecules ; 27(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36234827

RESUMEN

The behavioral responses of Hypera rumicis L. adults to varying blends of synthetic plant volatiles (SPVs) at various concentrations in lieu of single compounds are reported for the first time. For this study, Rumex confertus plants were treated with two blends of SPVs at different quantities that act as either attractants or repellents to insects. Blend 1 (B1) consisted of five green leaf volatiles (GLVs), namely (Z)-3-hexenal, (E)-2-hexenal, (Z)-3-hexenol, (E)-2-hexenol, and (Z)-3-hexen-1-yl acetate. Blend 2 (B2) contained six plant volatiles, namely (Z)-ocimene, linalool, benzyl acetate, methyl salicylate, ß-caryophyllene, and (E)-ß-farnesene. Each blend was made available in four different amounts of volatiles, corresponding to each compound being added to 50 µL of hexane in amounts of 1, 5, 25 and 125 ng. The effects of the two blends at the different concentrations on the insects were evaluated using a Y-tube olfactometer. Both sexes of the insects were found to be significantly repelled by the highest volatile levels of B1 and by two levels of B2 (25 and 125 ng). Females were also observed to be repelled using B2 with 5 ng of each volatile. Attraction was observed for both sexes only for B1 at the three lower volatile levels (1, 5 and 25 ng). In additional experiments, using only attractants, unmated females were found to be attracted to males, whereas mated females were only attracted to B1. Both unmated and mated males (previously observed in copula) were attracted only to females.


Asunto(s)
Compuestos Orgánicos Volátiles , Gorgojos , Aldehídos , Animales , Femenino , Hexanos , Insectos , Masculino , Plantas , Compuestos Orgánicos Volátiles/farmacología
4.
Anal Chem ; 90(9): 5664-5670, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29629760

RESUMEN

The high sensitivity of proton transfer reaction-mass spectrometry (PTR-MS) makes it a suitable analytical tool for detecting trace compounds. Its specificity is primarily determined by the accuracy of identifying the m/ z of the product ions specific to a particular compound. However, specificity can be enhanced by changing the product ions (concentrations and types) through modifying the reduced electric field. For current PTR-MS systems, this is not possible for trace compounds that would only be present in the reaction chamber of a PTR-MS for a short time (seconds). For such circumstances, it is necessary to change the reduce electric field swiftly if specificity enhancements are to be achieved. In this paper we demonstrate such a novel approach, which permits any compound that may only be present in the drift tube for seconds to be thoroughly investigated. Specifically, we have developed hardware and software which permits the reaction region's voltages to be rapidly switched at a frequency of 0.1-5 Hz. We show how this technique can be used to provide a higher confidence in the identification of compounds than is possible by keeping to one reduced electric field value through illustrating the detection of explosives. Although demonstrated for homeland security applications, this new technique has applications in other analytical areas and disciplines where rapid changes in a compound's concentration can occur, for example, in the Earth's atmosphere, plant emissions and in breath. Importantly, this adaptation provides a method for improved selectivity without expensive instrumental changes or the need for high mass resolution instruments.

5.
Anal Chem ; 88(21): 10624-10630, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27715015

RESUMEN

A key issue with any analytical system based on mass spectrometry with no initial separation of compounds is to have a high level of confidence in chemical assignment. This is particularly true for areas of security, such as airports, and recent terrorist attacks have highlighted the need for reliable analytical instrumentation. Proton transfer reaction mass spectrometry is a useful technology for these purposes because the chances of false positives are small owing to the use of a mass spectrometric analysis. However, the detection of an ion at a given m/z for an explosive does not guarantee that that explosive is present. There is still some ambiguity associated with any chemical assignment owing to the presence of isobaric compounds and, depending on mass resolution, ions with the same nominal m/z. In this article we describe how for the first time the use of a radio frequency ion-funnel (RFIF) in the reaction region (drift tube) of a proton transfer reaction-time-of-flight-mass spectrometer (PTR-ToF-MS) can be used to enhance specificity by manipulating the ion-molecule chemistry through collisional induced processes. Results for trinitrotoluene, dinitrotoluenes, and nitrotoluenes are presented to demonstrate the advantages of this new RFIF-PTR-ToF-MS for analytical chemical purposes.

6.
J Phys Chem A ; 118(37): 8229-36, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559481

RESUMEN

We have investigated the reactions of NO(+), H3O(+), O2(+), and Kr(+) with picric acid (2,4,6 trinitrophenol, C6H3N3O7, PiA) using a time-of-flight mass spectrometer with a switchable reagent ion source. NO(+) forms a simple adduct ion PiA·NO(+), while H3O(+) reacts with PiA via nondissociative proton transfer to form PiAH(+). In contrast, both O2(+) and Kr(+) react with PiA by nondissociative charge transfer to produce PiA(+). For Kr(+), we also observe dissociation of PiA, producing NO2(+) with a branching percentage of approximately 40%. For the reagent ions H3O(+) and O2(+) (and operating the drift tube with normal laboratory air), we find that the intensities of the PiAH(+) and PiA(+) ions both exhibit a peak at a given drift-tube voltage (which is humidity dependent). This unusual behavior implies a peak in the detection sensitivity of PiA as a function of the drift-tube voltage (and hence E/N). Aided by electronic-structure calculations and our previous studies of trinitrotoluene and trinitrobenzene, we provide a possible explanation for the observed peak in the detection sensitivity of PiA.


Asunto(s)
Espectrometría de Masas/métodos , Picratos/análisis , Indicadores y Reactivos/química , Criptón/química , Óxido Nítrico/química , Oxígeno/química , Picratos/química , Teoría Cuántica , Agua/química
7.
Int J Mass Spectrom ; 360: 28-38, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25844048

RESUMEN

The rapid expansion in the number and use of new psychoactive substances presents a significant analytical challenge because highly sensitive instrumentation capable of detecting a broad range of chemical compounds in real-time with a low rate of false positives is required. A Selective Reagent Ionisation-Time of Flight-Mass Spectrometry (SRI-ToF-MS) instrument is capable of meeting all of these requirements. With its high mass resolution (up to m/Δm of 8000), the application of variations in reduced electric field strength (E/N) and use of different reagent ions, the ambiguity of a nominal (monoisotopic) m/z is reduced and hence the identification of chemicals in a complex chemical environment with a high level of confidence is enabled. In this study we report the use of a SRI-ToF-MS instrument to investigate the reactions of H3O+, O2+, NO+ and Kr+ with 10 readily available (at the time of purchase) new psychoactive substances, namely 4-fluoroamphetamine, methiopropamine, ethcathinone, 4-methylethcathinone, N-ethylbuphedrone, ethylphenidate, 5-MeO-DALT, dimethocaine, 5-(2-aminopropyl)benzofuran and nitracaine. In particular, the dependence of product ion branching ratios on the reduced electric field strength for all reagent ions was investigated and is reported here. The results reported represent a significant amount of new data which will be of use for the development of drug detection techniques suitable for real world scenarios.

8.
J Breath Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955168

RESUMEN

Preservation of the breath sample integrity during storage and transport is one of biggest challenges in off-line exhaled breath gas analysis. In this context, adsorbent tubes are frequently used as storage containers for use with analytical methods employing gas chromatography with mass spectrometric detection. The key objective of this short communication is to provide data on the recovery of selected breath volatiles from Tenax® TA adsorbent tubes that were stored at -80 C for up to 90 days. For this purpose, an Owlstone Medical's ReCIVA® Breath Sampler was used for exhaled breath collection. The following fifteen compounds, selected to cover a range of chemical properties, were monitored for their stability: isoprene, n-heptane, n-nonane, toluene, p-cymene, allyl methyl sulfide, 1-(methylthio)-propane, 1-(methylthio)-1-propene, -pinene, DL-limonene, ß-pinene, -terpinene, 2-pentanone, acetoin and 2,3 butanedione. All compounds but one (acetoin) were found to be stable during the first 4 weeks of storage (recovery within  2×RSD). Furthermore, n-nonane was stable during the whole of the investigated period.

9.
PLoS One ; 19(5): e0302541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38696430

RESUMEN

This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.


Asunto(s)
Chrysanthemum , Enfermedades de las Plantas , Rhizoctonia , Compuestos Orgánicos Volátiles , Chrysanthemum/metabolismo , Chrysanthemum/microbiología , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Rhizoctonia/fisiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/química , Cromatografía de Gases y Espectrometría de Masas , Clorofila/metabolismo , Clorofila/análisis , Carotenoides/metabolismo , Carotenoides/análisis
10.
J Breath Res ; 18(2)2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38467063

RESUMEN

Volatilomics is a powerful tool capable of providing novel biomarkers for the diagnosis of gastric cancer. The main objective of this study was to characterize the volatilomic signatures of gastric juice in order to identify potential alterations induced by gastric cancer. Gas chromatography with mass spectrometric detection, coupled with headspace solid phase microextraction as the pre-concentration technique, was used to identify volatile organic compounds (VOCs) released by gastric juice samples collected from 78 gastric cancer patients and two cohorts of controls (80 and 96 subjects) from four different locations (Latvia, Ukraine, Brazil, and Colombia). 1440 distinct compounds were identified in samples obtained from patients and 1422 in samples provided by controls. However, only 6% of the VOCs exhibited an incidence higher than 20%. Amongst the volatiles emitted, 18 showed differences in their headspace concentrations above gastric juice of cancer patients and controls. Ten of these (1-propanol, 2,3-butanedione, 2-pentanone, benzeneacetaldehyde, 3-methylbutanal, butylated hydroxytoluene, 2-pentyl-furan, 2-ethylhexanal, 2-methylpropanal and phenol) appeared at significantly higher levels in the headspace of the gastric juice samples obtained from patients; whereas, eight species showed lower abundance in patients than found in controls. Given that the difference in the volatilomic signatures can be explained by cancer-related changes in the activity of certain enzymes or pathways, the former set can be considered potential biomarkers for gastric cancer, which may assist in developing non-invasive breath tests for the diagnosis of this disease. Further studies are required to elucidate further the mechanisms that underlie the changes in the volatilomic profile as a result of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Compuestos Orgánicos Volátiles , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Pruebas Respiratorias/métodos , Biomarcadores/análisis , Compuestos Orgánicos Volátiles/análisis , Microextracción en Fase Sólida/métodos , Jugo Gástrico/metabolismo
11.
Rapid Commun Mass Spectrom ; 27(2): 325-32, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23239380

RESUMEN

RATIONALE: Security and protection against terrorist attacks are major issues in modern society. One especially challenging task is the monitoring and protection of air conditioning and heating systems of buildings against terrorist attacks with toxic chemicals. As existing technologies have low selectivity, long response times or insufficient sensitivity, there is a need for a novel approach such as we present here. METHODS: We have analyzed various chemical warfare agents (CWAs) and/or toxic industrial compounds (TICs) and related compounds, namely phosgene, diphosgene, chloroacetone, chloroacetophenone, diisopropylaminoethanol, and triethyl phosphate, utilizing a high-resolution proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) instrument with the objective of finding key product ions and their intensities, which will allow a low-resolution quadrupole mass spectrometry based PTR-MS system to be used with high confidence in the assignment of threat agents in the atmosphere. RESULTS: We obtained high accuracy PTR-TOFMS mass spectra of the six compounds under study at two different values for the reduced electric field in the drift tube (E/N). From these data we have compiled a table containing product ions, and isotopic and E/N ratios for highly selective threat compound detection with a compact and cost-effective quadrupole-based PTR-MS instrument. Furthermore, using chloroacetophenone (tear gas), we demonstrated that this instrument's response is highly linear in the concentration range of typical Acute Exposure Guideline Levels (AEGLs). CONCLUSIONS: On the basis of the presented results it is possible to develop a compact and cost-effective PTR-QMS instrument that monitors air supply systems and triggers an alarm as soon as the presence of a threat agent is detected. We hope that this real-time surveillance device will help to seriously improve safety and security in environments vulnerable to terrorist attacks with toxic chemicals.

12.
J Breath Res ; 17(4)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37548323

RESUMEN

In this perspective, we review the evidence for the efficacy of face masks to reduce the transmission of respiratory viruses, specifically severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and consider the value of mandating universal mask wearing against the widespread negative impacts that have been associated with such measures. Before the SARS-CoV-2 pandemic, it was considered that there was little to no benefit in healthy people wearing masks as prophylaxis against becoming infected or as unwitting vectors of viral transmission. This accepted policy was hastily reversed early on in the pandemic, when districts and countries throughout the world imposed stringent masking mandates. Now, more than three years since the start of the pandemic, the amassed studies that have investigated the use of masks to reduce transmission of SARS-CoV-2 (or other pathogens) have led to conclusions that are largely inconsistent and contradictory. There is no statistically significant or unambiguous scientific evidence to justify mandatory masking for general, healthy populations with the intention of lessening the viral spread. Even if mask wearing could potentially reduce the transmission of SARS-CoV-2 in individual cases, this needs to be balanced against the physical, psychological and social harms associated with forced mask wearing, not to mention the negative impact of innumerable disposed masks entering our fragile environment. Given the lack of unequivocal scientific proof that masks have any effect on reducing transmission, together with the evident harms to people and the environment through the use of masks, it is our opinion that the mandatory use of face masks in the general population is unjustifiable and must be abandoned in future pandemic countermeasures policies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , Pruebas Respiratorias , Pandemias/prevención & control
13.
Diagnostics (Basel) ; 13(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36766440

RESUMEN

BACKGROUND: Volatilomics is a powerful tool capable of providing novel biomarkers for medical diagnosis and therapy monitoring. The objective of this study is to identify potential volatile biomarkers of gastric cancer. METHODS: The volatilomic signatures of gastric tissues obtained from two distinct populations were investigated using gas chromatography with mass spectrometric detection. RESULTS: Amongst the volatiles emitted, nineteen showed differences in their headspace concentrations above the normal and cancer tissues in at least one population of patients. Headspace levels of seven compounds (hexanal, nonanal, cyclohexanone, 2-nonanone, pyrrole, pyridine, and phenol) were significantly higher above the cancer tissue, whereas eleven volatiles (ethyl acetate, acetoin, 2,3-butanedione, 3-methyl-1-butanol, 2-pentanone, γ-butyrolactone, DL-limonene, benzaldehyde, 2-methyl-1-propanol, benzonitrile, and 3-methyl-butanal) were higher above the non-cancerous tissue. One compound, isoprene, exhibited contradictory alterations in both cohorts. Five compounds, pyridine, ethyl acetate, acetoin, 2,3-butanedione, and 3-methyl-1-butanol, showed consistent cancer-related changes in both populations. CONCLUSIONS: Pyridine is found to be the most promising biomarker candidate for detecting gastric cancer. The difference in the volatilomic signatures can be explained by cancer-related changes in the activity of certain enzymes, or pathways. The results of this study confirm that the chemical fingerprint formed by volatiles in gastric tissue is altered by gastric cancer.

14.
ACS Sens ; 8(7): 2618-2626, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37377394

RESUMEN

Liver diseases (e.g., cirrhosis, cancer) cause more than two million deaths per year worldwide. This is partly attributed to late diagnosis and insufficient screening techniques. A promising biomarker for noninvasive and inexpensive liver disease screening is breath limonene that can indicate a deficiency of the cytochrome P450 liver enzymes. Here, we introduce a compact and low-cost detector for dynamic and selective breath limonene sensing. It comprises a chemoresistive sensor based on Si/WO3 nanoparticles pre-screened by a packed bed Tenax separation column at room temperature. We demonstrate selective limonene detection down to 20 parts per billion over up to three orders of magnitude higher concentrated acetone, ethanol, hydrogen, methanol, and 2-propanol in gas mixtures, as well as robustness to 10-90% relative humidity. Most importantly, this detector recognizes the individual breath limonene dynamics of four healthy volunteers following the ingestion (swallowing or chewing) of a limonene capsule. Limonene release and subsequent metabolization are monitored from breath measurements in real time and in excellent agreement (R2 = 0.98) with high-resolution proton transfer reaction mass spectrometry. This study demonstrates the potential of the detector as a simple-to-use and noninvasive device for the routine monitoring of limonene levels in exhaled breath to facilitate early diagnosis of liver dysfunction.


Asunto(s)
Acetona , Cirrosis Hepática , Humanos , Limoneno , Espectrometría de Masas/métodos , Acetona/análisis , Protones
15.
J Am Soc Mass Spectrom ; 34(5): 958-968, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-36995741

RESUMEN

Here we explore the potential use of proton transfer reaction/selective reagent ion-time-of-flight-mass spectrometry (PTR/SRI-ToF-MS) to monitor hexafluoroisopropanol (HFIP) in breath. Investigations of the reagent ions H3O+, NO+, and O2+• are reported using dry (relative humidity (rH) ≈ 0%) and humid (rH ≈ 100%)) nitrogen gas containing traces of HFIP, i.e., divorced from the complex chemical environment of exhaled breath. HFIP shows no observable reaction with H3O+ and NO+, but it does react efficiently with O2+• via dissociative charge transfer resulting in CHF2+, CF3+, C2HF2O+, and C2H2F3O+. A minor competing hydride abstraction channel results in C3HF6O+ + HO2• and, following an elimination of HF, C3F5O+. There are two issues associated with the use of the three dominant product ions of HFIP, CHF2+, CF3+, and C2H2F3O+, to monitor it in breath. One is that CHF2+ and CF3+ also result from the reaction of O2+• with the more abundant sevoflurane. The second is the facile reaction of these product ions with water, which reduces analytical sensitivity to detect HFIP in humid breath. To overcome the first issue, C2H2F3O+ is the ion marker for HFIP. The second issue is surmounted by using a Nafion tube to reduce the breath sample's humidity prior to its introduction into drift tube. The success of this approach is illustrated by comparing the product ion signals either in dry or humid nitrogen gas flows and with or without the use of the Nafion tube, and practically from the analysis of a postoperative exhaled breath sample from a patient volunteer.


Asunto(s)
Gases , Nitrógeno , Humanos , Espectrometría de Masas/métodos , Iones , Pruebas Respiratorias/métodos
16.
J Breath Res ; 17(4)2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37406623

RESUMEN

The use of volatile biomarkers in exhaled breath as predictors to individual drug response would advance the field of personalised medicine by providing direct information on enzyme activity. This would result in enormous benefits, both for patients and for the healthcare sector. Non-invasive breath tests would also gain a high acceptance by patients. Towards this goal, differences in metabolism resulting from extensive polymorphisms in a major group of drug-metabolizing enzymes, the cytochrome P450 (CYP) family, need to be determined and quantified. CYP2C9 is responsible for metabolising many crucial drugs (e.g., diclofenac) and food ingredients (e.g., limonene). In this paper, we provide a proof-of-concept study that illustrates thein vitrobioconversion of diclofenac in recombinant HEK293T cells overexpressing CYP2C9 to 4'-hydroxydiclofenac. Thisin vitroapproach is a necessary and important first step in the development of breath tests to determine and monitor metabolic processes in the human body. By focusing on the metabolic conversion of diclofenac, we have been able to establish a workflow using a cell-based system for CYP2C9 activity. Furthermore, we illustrate how the bioconversion of diclofenac is limited in the presence of limonene, which is another CYP2C9 metabolising substrate. We show that increasing limonene levels continuously reduce the production of 4'-hydroxydiclofenac. Michaelis-Menten kinetics were performed for the diclofenac 4'-hydroxylation with and without limonene, giving a kinetic constant of the reaction,KM, of 103µM and 94.1µM, respectively, and a maximum reaction rate,Vmax, of 46.8 pmol min-1106cells-1and 56.0 pmol min-1106cells-1with and without the inhibitor, respectively, suggesting a non-competitive or mixed inhibition type. The half-maximal inhibitory concentration value (IC50) for the inhibition of the formation of 4'-hydroxydiclofenace by limonene is determined to be 1413µM.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas , Diclofenaco , Humanos , Diclofenaco/metabolismo , Diclofenaco/farmacología , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Hidrocarburo de Aril Hidroxilasas/metabolismo , Células HEK293 , Limoneno , Medicina de Precisión , Flujo de Trabajo , Pruebas Respiratorias , Sistema Enzimático del Citocromo P-450/metabolismo
17.
Anal Chem ; 84(9): 4161-6, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22482459

RESUMEN

Fears of terrorist attacks have led to the development of various technologies for the real-time detection of explosives, but all suffer from potential ambiguities in the assignment of threat agents. Using proton transfer reaction mass spectrometry (PTR-MS), an unusual bias dependence in the detection sensitivity of 2,4,6 trinitrotoluene (TNT) on the reduced electric field (E/N) has been observed. For protonated TNT, rather than decreasing signal intensity with increasing E/N, which is the more usual sensitivity pattern observed in PTR-MS studies, an anomalous behavior is first observed, whereby the signal intensity initially rises with increasing E/N. We relate this to unexpected ion-molecule chemistry based upon comparisons of measurements taken with related nitroaromatic compounds (1,3,5 trinitrobenzene, 1,3 dinitrobenzene, and 2,4 dinitrotoluene) and electronic structure calculations. This dependence provides an easily measurable signature that can be used to provide a rapid highly selective analytical procedure to minimize false positives for the detection of TNT. This has major implications for Homeland Security and, in addition, has the potential of making instrumentation cost-effective for use in security areas. This study shows that an understanding of fundamental ion-molecule chemistry occurring in low-pressure drift tubes is needed to exploit selectivity and sensitivity for analytical purposes.

18.
Phytochemistry ; 198: 113162, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35278419

RESUMEN

The most popular means of plant protection is the chemical method, but this control is often connected with the need for repeating chemical treatments. Thus, eco-friendly strategies should be developed where, under the European Green Deal, aromatic plants and their repellent properties seem to constitute a good alternative. In earlier studies, we have shown that insect injury, bacteria infestation and pathogen infection induce plant volatile organic compounds (VOCs) emission, which can provide defensive functions to plants. In this study, Triticum aestivum L. (Poaceae) cv. 'Jenga' wheat plants were intentionally infected with one of four Rhizoctonia species (R. cerealis, R. solani, R. zeae, and R. oryzae). The soil was inoculated by the pathogens during sowing, whereas shoots were inoculated at stage BBCH 33. In greenhouse experiments, we measured VOCs from wheat 3, 7 and 11 days following stem infestation, or 42 days following soil inoculation of Rhizoctonia spp. VOC emissions were found to be largest on days 7 or 11 post-stem inoculation (>3 days post-stem inoculation >42 days post-soil inoculation). T. aestivum infected by pathogens induced five common green leaf volatiles (GLVs), namely (Z)-3-hexenal = (Z)-3-HAL, (E)-2-hexenal = (E)-2-HAL, (Z)-3-hexen-1-ol = (Z)-3- HOL, (E)-2-hexenol = (E)-2-HOL, (Z)-3-hexen-1-yl acetate = (Z)-3-HAC], six common terpenes (ß-pinene = ß-PIN, ß-myrcene = ß-MYR, Z-ocimene = Z-OCI, linalool = LIN, benzyl acetate = BAC, ß-caryophyllene = ß-CAR), and indole = IND. We found that R. cerealis infested T. aestivum emitted the largest amounts of (Z)-3-HAL and (Z)-3-HAC, while T. aestivum infested by R. solani released the largest amount of LIN (7 or 11 days following stem infestation). VOCs released by the T. aestivum after R. cerealis (AGD I) and R. solani (AG 5) infestations were significantly larger in comparison to R. zeae (WAG-Z) and R. oryzae (WAG-O) for the volatiles (Z)-3-HAL, (E)-2-HAL, (Z)-3-HOL, (E)-2-HOL, (Z)-3-HAC, ß-PIN, ß-MYR, and LIN. With the exception of (E)-2-HOL, ß-MYR, LIN, BAC, ß-CAR, the other VOCs were emitted in similar amounts by infected T. aestivum 3 days following stem and soil inoculation. The quantities of induced VOCs were higher at days 7 and 11 than at 3 days post-infection, and greater when T. aestivum was infected with Rhizoctonia on the stem base than through the soil.


Asunto(s)
Triticum , Compuestos Orgánicos Volátiles , Hojas de la Planta/microbiología , Rhizoctonia , Suelo , Compuestos Orgánicos Volátiles/farmacología
19.
J Breath Res ; 15(4)2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34416737

RESUMEN

A major challenge for breath research is the lack of standardization in sampling and analysis. To address this, a test that utilizes a standardized intervention and a defined study protocol has been proposed to explore disparities in breath research across different analytical platforms and to provide benchmark values for comparison. Specifically, thePeppermint Experimentinvolves the targeted analysis in exhaled breath of volatile constituents of peppermint oil after ingestion of the encapsulated oil. Data from thePeppermint Experimentperformed by proton transfer reaction mass spectrometry (PTR-MS) and selected ion flow tube mass spectrometry (SIFT-MS) are presented and discussed herein, including the product ions associated with the key peppermint volatiles, namely limonene,α- andß-pinene, 1,8-cineole, menthol, menthone and menthofuran. The breath washout profiles of these compounds from 65 individuals were collected, comprising datasets from five PTR-MS and two SIFT-MS instruments. The washout profiles of these volatiles were evaluated by comparing the log-fold change over time of the product ion intensities associated with each volatile. Benchmark values were calculated from the lower 95% confidence interval of the linear time-to-washout regression analysis for all datasets combined. Benchmark washout values from PTR-MS analysis were 353 min for the sum of monoterpenes and 1,8-cineole (identical product ions), 173 min for menthol, 330 min for menthofuran, and 218 min for menthone; from SIFT-MS analysis values were 228 min for the sum of monoterpenes, 281 min for the sum of monoterpenes and 1,8-cineole, and 370 min for menthone plus 1,8-cineole. Large inter- and intra-dataset variations were observed, whereby the latter suggests that biological variability plays a key role in how the compounds are absorbed, metabolized and excreted from the body via breath. This variability seems large compared to the influence of sampling and analytical procedures, but further investigations are recommended to clarify the effects of these factors.


Asunto(s)
Mentha piperita , Protones , Benchmarking , Pruebas Respiratorias , Humanos , Espectrometría de Masas
20.
J Clin Med ; 10(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374433

RESUMEN

Lung cancer, chronic obstructive pulmonary disease (COPD) and asthma are inflammatory diseases that have risen worldwide, posing a major public health issue, encompassing not only physical and psychological morbidity and mortality, but also incurring significant societal costs. The leading cause of death worldwide by cancer is that of the lung, which, in large part, is a result of the disease often not being detected until a late stage. Although COPD and asthma are conditions with considerably lower mortality, they are extremely distressful to people and involve high healthcare overheads. Moreover, for these diseases, diagnostic methods are not only costly but are also invasive, thereby adding to people's stress. It has been appreciated for many decades that the analysis of trace volatile organic compounds (VOCs) in exhaled breath could potentially provide cheaper, rapid, and non-invasive screening procedures to diagnose and monitor the above diseases of the lung. However, after decades of research associated with breath biomarker discovery, no breath VOC tests are clinically available. Reasons for this include the little consensus as to which breath volatiles (or pattern of volatiles) can be used to discriminate people with lung diseases, and our limited understanding of the biological origin of the identified VOCs. Lung disease diagnosis using breath VOCs is challenging. Nevertheless, the numerous studies of breath volatiles and lung disease provide guidance as to what volatiles need further investigation for use in differential diagnosis, highlight the urgent need for non-invasive clinical breath tests, illustrate the way forward for future studies, and provide significant guidance to achieve the goal of developing non-invasive diagnostic tests for lung disease. This review provides an overview of these issues from evaluating key studies that have been undertaken in the years 2010-2019, in order to present objective and comprehensive updated information that presents the progress that has been made in this field. The potential of this approach is highlighted, while strengths, weaknesses, opportunities, and threats are discussed. This review will be of interest to chemists, biologists, medical doctors and researchers involved in the development of analytical instruments for breath diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA