Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 108(6): 1069-1082, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34022130

RESUMEN

BCAS3 microtubule-associated cell migration factor (BCAS3) is a large, highly conserved cytoskeletal protein previously proposed to be critical in angiogenesis and implicated in human embryogenesis and tumorigenesis. Here, we established BCAS3 loss-of-function variants as causative for a neurodevelopmental disorder. We report 15 individuals from eight unrelated families with germline bi-allelic loss-of-function variants in BCAS3. All probands share a global developmental delay accompanied by pyramidal tract involvement, microcephaly, short stature, strabismus, dysmorphic facial features, and seizures. The human phenotype is less severe compared with the Bcas3 knockout mouse model and cannot be explained by angiogenic defects alone. Consistent with being loss-of-function alleles, we observed absence of BCAS3 in probands' primary fibroblasts. By comparing the transcriptomic and proteomic data based on probands' fibroblasts with those of the knockout mouse model, we identified similar dysregulated pathways resulting from over-representation analysis, while the dysregulation of some proposed key interactors could not be confirmed. Together with the results from a tissue-specific Drosophila loss-of-function model, we demonstrate a vital role for BCAS3 in neural tissue development.


Asunto(s)
Mutación con Pérdida de Función , Pérdida de Heterocigocidad , Proteínas de Neoplasias/genética , Trastornos del Neurodesarrollo/etiología , Adolescente , Adulto , Animales , Movimiento Celular , Niño , Preescolar , Drosophila , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Masculino , Ratones , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Linaje , Proteoma/análisis , Adulto Joven
2.
Brain ; 145(9): 3095-3107, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35718349

RESUMEN

The hereditary spastic paraplegias (HSP) are among the most genetically diverse of all Mendelian disorders. They comprise a large group of neurodegenerative diseases that may be divided into 'pure HSP' in forms of the disease primarily entailing progressive lower-limb weakness and spasticity, and 'complex HSP' when these features are accompanied by other neurological (or non-neurological) clinical signs. Here, we identified biallelic variants in the transmembrane protein 63C (TMEM63C) gene, encoding a predicted osmosensitive calcium-permeable cation channel, in individuals with hereditary spastic paraplegias associated with mild intellectual disability in some, but not all cases. Biochemical and microscopy analyses revealed that TMEM63C is an endoplasmic reticulum-localized protein, which is particularly enriched at mitochondria-endoplasmic reticulum contact sites. Functional in cellula studies indicate a role for TMEM63C in regulating both endoplasmic reticulum and mitochondrial morphologies. Together, these findings identify autosomal recessive TMEM63C variants as a cause of pure and complex HSP and add to the growing evidence of a fundamental pathomolecular role of perturbed mitochondrial-endoplasmic reticulum dynamics in motor neurone degenerative diseases.


Asunto(s)
Canales de Calcio , Mitocondrias , Paraplejía Espástica Hereditaria , Canales de Calcio/genética , Retículo Endoplásmico/genética , Humanos , Mitocondrias/patología , Mutación , Paraplejía Espástica Hereditaria/genética
3.
Am J Hum Genet ; 105(5): 1048-1056, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31668703

RESUMEN

NTNG2 encodes netrin-G2, a membrane-anchored protein implicated in the molecular organization of neuronal circuitry and synaptic organization and diversification in vertebrates. In this study, through a combination of exome sequencing and autozygosity mapping, we have identified 16 individuals (from seven unrelated families) with ultra-rare homozygous missense variants in NTNG2; these individuals present with shared features of a neurodevelopmental disorder consisting of global developmental delay, severe to profound intellectual disability, muscle weakness and abnormal tone, autistic features, behavioral abnormalities, and variable dysmorphisms. The variants disrupt highly conserved residues across the protein. Functional experiments, including in silico analysis of the protein structure, in vitro assessment of cell surface expression, and in vitro knockdown, revealed potential mechanisms of pathogenicity of the variants, including loss of protein function and decreased neurite outgrowth. Our data indicate that appropriate expression of NTNG2 plays an important role in neurotypical development.


Asunto(s)
Proteínas Ligadas a GPI/genética , Mutación Missense/genética , Netrinas/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Adulto , Niño , Preescolar , Exoma/genética , Femenino , Homocigoto , Humanos , Discapacidad Intelectual/genética , Masculino , Linaje , Secuenciación del Exoma/métodos , Adulto Joven
4.
J Med Genet ; 58(7): 495-504, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32719099

RESUMEN

BACKGROUND: Adenosine-to-inosine RNA editing is a co-transcriptional/post-transcriptional modification of double-stranded RNA, catalysed by one of two active adenosine deaminases acting on RNA (ADARs), ADAR1 and ADAR2. ADARB1 encodes the enzyme ADAR2 that is highly expressed in the brain and essential to modulate the function of glutamate and serotonin receptors. Impaired ADAR2 editing causes early onset progressive epilepsy and premature death in mice. In humans, ADAR2 dysfunction has been very recently linked to a neurodevelopmental disorder with microcephaly and epilepsy in four unrelated subjects. METHODS: We studied three children from two consanguineous families with severe developmental and epileptic encephalopathy (DEE) through detailed physical and instrumental examinations. Exome sequencing (ES) was used to identify ADARB1 mutations as the underlying genetic cause and in vitro assays with transiently transfected cells were performed to ascertain the impact on ADAR2 enzymatic activity and splicing. RESULTS: All patients showed global developmental delay, intractable early infantile-onset seizures, microcephaly, severe-to-profound intellectual disability, axial hypotonia and progressive appendicular spasticity. ES revealed the novel missense c.1889G>A, p.(Arg630Gln) and deletion c.1245_1247+1 del, p.(Leu415PhefsTer14) variants in ADARB1 (NM_015833.4). The p.(Leu415PhefsTer14) variant leads to incorrect splicing resulting in frameshift with a premature stop codon and loss of enzyme function. In vitro RNA editing assays showed that the p.(Arg630Gln) variant resulted in a severe impairment of ADAR2 enzymatic activity. CONCLUSION: In conclusion, these data support the pathogenic role of biallelic ADARB1 variants as the cause of a distinctive form of DEE, reinforcing the importance of RNA editing in brain function and development.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Encefalopatías/genética , Epilepsia/genética , Trastornos del Neurodesarrollo/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Alelos , Encefalopatías/enzimología , Encefalopatías/metabolismo , Niño , Preescolar , Consanguinidad , Epilepsia/enzimología , Femenino , Células HEK293 , Humanos , Mutación , Trastornos del Neurodesarrollo/enzimología , Linaje , Edición de ARN , Proteínas de Unión al ARN/metabolismo
5.
J Med Genet ; 58(12): 815-831, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33172956

RESUMEN

BACKGROUND: Pathogenic variants of GNB5 encoding the ß5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS: We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS: We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening.


Asunto(s)
Arritmias Cardíacas/genética , Discapacidades del Desarrollo/genética , Subunidades beta de la Proteína de Unión al GTP/genética , Corazón/fisiopatología , Mutación , Transducción de Señal/genética , Adolescente , Animales , Arritmias Cardíacas/fisiopatología , Niño , Preescolar , Discapacidades del Desarrollo/fisiopatología , Femenino , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Perfilación de la Expresión Génica/métodos , Frecuencia Cardíaca/genética , Frecuencia Cardíaca/fisiología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Linaje , Síndrome , Secuenciación del Exoma/métodos , Adulto Joven
6.
Hum Genet ; 140(6): 915-931, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33496845

RESUMEN

Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.


Asunto(s)
Sustitución de Aminoácidos , Cromosomas Humanos Par 4/química , Células Ciliadas Auditivas Internas/metabolismo , Pérdida Auditiva Sensorineural/genética , Proteínas de la Membrana/genética , Mutación Puntual , Tetraspaninas/genética , Adulto , Alelos , Animales , Secuencia de Bases , Mapeo Cromosómico , Consanguinidad , Femenino , Expresión Génica , Genes Recesivos , Células Ciliadas Auditivas Internas/patología , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Proteínas de la Membrana/deficiencia , Ratones , Linaje , Tetraspaninas/deficiencia , Secuenciación del Exoma , Pez Cebra
7.
Genet Med ; 23(4): 787-792, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33288880

RESUMEN

PURPOSE: Variants in genes encoding sarcomeric proteins are the most common cause of inherited cardiomyopathies. However, the underlying genetic cause remains unknown in many cases. We used exome sequencing to reveal the genetic etiology in patients with recessive familial cardiomyopathy. METHODS: Exome sequencing was carried out in three consanguineous families. Functional assessment of the variants was performed. RESULTS: Affected individuals presented with hypertrophic or dilated cardiomyopathy of variable severity from infantile- to early adulthood-onset and sudden cardiac death. We identified a homozygous missense substitution (c.170C>A, p.[Ala57Asp]), a homozygous translation stop codon variant (c.106G>T, p.[Glu36Ter]), and a presumable homozygous essential splice acceptor variant (c.482-1G>A, predicted to result in skipping of exon 5). Morpholino knockdown of the MYL3 orthologue in zebrafish, cmlc1, resulted in compromised cardiac function, which could not be rescued by reintroduction of MYL3 carrying either the nonsense c.106G>T or the missense c.170C>A variants. Minigene assay of the c.482-1G>A variant indicated a splicing defect likely resulting in disruption of the EF-hand Ca2+ binding domains. CONCLUSIONS: Our data demonstrate that homozygous MYL3 loss-of-function variants can cause of recessive cardiomyopathy and occurrence of sudden cardiac death, most likely due to impaired or loss of myosin essential light chain function.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cadenas Ligeras de Miosina/genética , Animales , Cardiomiopatías/genética , Cardiomiopatía Dilatada/genética , Consanguinidad , Muerte Súbita Cardíaca/etiología , Humanos , Linaje , Pez Cebra/genética
8.
Genet Med ; 23(10): 1933-1943, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34172899

RESUMEN

PURPOSE: Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS: Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS: We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION: Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.


Asunto(s)
Pérdida Auditiva , Lisina-ARNt Ligasa/genética , Trastornos del Neurodesarrollo , Alelos , Animales , Modelos Animales de Enfermedad , Pérdida Auditiva/genética , Humanos , Trastornos del Neurodesarrollo/genética , Fenotipo , Pez Cebra/genética
9.
Genet Med ; 23(11): 2122-2137, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34345025

RESUMEN

PURPOSE: Pathogenic variants in SETD1B have been associated with a syndromic neurodevelopmental disorder including intellectual disability, language delay, and seizures. To date, clinical features have been described for 11 patients with (likely) pathogenic SETD1B sequence variants. This study aims to further delineate the spectrum of the SETD1B-related syndrome based on characterizing an expanded patient cohort. METHODS: We perform an in-depth clinical characterization of a cohort of 36 unpublished individuals with SETD1B sequence variants, describing their molecular and phenotypic spectrum. Selected variants were functionally tested using in vitro and genome-wide methylation assays. RESULTS: Our data present evidence for a loss-of-function mechanism of SETD1B variants, resulting in a core clinical phenotype of global developmental delay, language delay including regression, intellectual disability, autism and other behavioral issues, and variable epilepsy phenotypes. Developmental delay appeared to precede seizure onset, suggesting SETD1B dysfunction impacts physiological neurodevelopment even in the absence of epileptic activity. Males are significantly overrepresented and more severely affected, and we speculate that sex-linked traits could affect susceptibility to penetrance and the clinical spectrum of SETD1B variants. CONCLUSION: Insights from this extensive cohort will facilitate the counseling regarding the molecular and phenotypic landscape of newly diagnosed patients with the SETD1B-related syndrome.


Asunto(s)
Epilepsia , N-Metiltransferasa de Histona-Lisina , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Epilepsia/diagnóstico , Epilepsia/genética , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Masculino , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Convulsiones/diagnóstico , Convulsiones/genética
10.
Am J Hum Genet ; 100(3): 537-545, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28190459

RESUMEN

Congenital muscular dystrophies display a wide phenotypic and genetic heterogeneity. The combination of clinical, biochemical, and molecular genetic findings must be considered to obtain the precise diagnosis and provide appropriate genetic counselling. Here we report five individuals from four families presenting with variable clinical features including muscular dystrophy with a reduction in dystroglycan glycosylation, short stature, intellectual disability, and cataracts, overlapping both the dystroglycanopathies and Marinesco-Sjögren syndrome. Whole-exome sequencing revealed homozygous missense and compound heterozygous mutations in INPP5K in the affected members of each family. INPP5K encodes the inositol polyphosphate-5-phosphatase K, also known as SKIP (skeletal muscle and kidney enriched inositol phosphatase), which is highly expressed in the brain and muscle. INPP5K localizes to both the endoplasmic reticulum and to actin ruffles in the cytoplasm. It has been shown to regulate myoblast differentiation and has also been implicated in protein processing through its interaction with the ER chaperone HSPA5/BiP. We show that morpholino-mediated inpp5k loss of function in the zebrafish results in shortened body axis, microphthalmia with disorganized lens, microcephaly, reduced touch-evoked motility, and highly disorganized myofibers. Altogether these data demonstrate that mutations in INPP5K cause a congenital muscular dystrophy syndrome with short stature, cataracts, and intellectual disability.


Asunto(s)
Distrofia Muscular de Cinturas/genética , Monoéster Fosfórico Hidrolasas/genética , Degeneraciones Espinocerebelosas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Niño , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Femenino , Estudio de Asociación del Genoma Completo , Glicosilación , Trastornos del Crecimiento/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Músculo Esquelético/metabolismo , Mutación , Linaje , Adulto Joven , Pez Cebra/genética
11.
Cell Mol Neurobiol ; 38(4): 891-899, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29110207

RESUMEN

Recently our group used oligodendrocyte progenitor cells (OPCs) as appropriate model cells to pinpoint the mechanism of the progress of neurodegenerative disorders. In the present study, we focused on the therapeutic role of osteopontin (OPN), a secreted glycosylated phosphoprotein, involved in a number of physiological events including bone formation and remodeling, immune responses, and tumor progression. Protective role of OPN, as a negative regulator of tumorigenesis, has already been clarified. Human embryonic stem cell-derived OPCs were pretreated with OPN before induction of apoptosis by H2O2. Data indicated that OPN prohibited cell death and enhanced OPC viability. This effect is achieved through reduction of apoptosis and induction of anti-apoptosis markers. In addition OPN induces expression of several integrin subunits, responsible for OPN interaction. Notably, our findings showed that expression of αV ß1/ß3/ß5 and ß8 integrins increased in response to OPN, while treatment with H2O2 down-regulated αV ß1/ß5 and ß8 integrins expression significantly. In conclusion, OPN may act via αV integrin signaling and trigger suppression of P53-dependent apoptotic cascades. Therefore OPN therapy may be considered as a feasible process to prevent progress of neurodegenerative diseases in human.


Asunto(s)
Apoptosis/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Osteopontina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Integrina alfaV/metabolismo , Células Precursoras de Oligodendrocitos/citología , Osteopontina/metabolismo , Transducción de Señal/efectos de los fármacos
12.
Neurol Sci ; 39(11): 1917-1925, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30128655

RESUMEN

Biallelic mutations of the alsin Rho guanine nucleotide exchange factor (ALS2) gene cause a group of overlapping autosomal recessive neurodegenerative disorders including infantile-onset ascending hereditary spastic paralysis (IAHSP), juvenile primary lateral sclerosis (JPLS), and juvenile amyotrophic lateral sclerosis (JALS/ALS2), caused by retrograde degeneration of the upper motor neurons of the pyramidal tracts. Here, we describe 11 individuals with IAHSP, aged 2-48 years, with IAHSP from three unrelated consanguineous Iranian families carrying the homozygous c.1640+1G>A founder mutation in ALS2. Three affected siblings from one family exhibit generalized dystonia which has not been previously described in families with IAHSP and has only been reported in three unrelated consanguineous families with JALS/ALS2. We report the oldest individuals with IAHSP to date and provide evidence that these patients survive well into their late 40s with preserved cognition and normal eye movements. Our study delineates the phenotypic spectrum of IAHSP and ALS2-related disorders and provides valuable insights into the natural disease course.


Asunto(s)
Salud de la Familia , Factores de Intercambio de Guanina Nucleótido/genética , Mutación/genética , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Humanos , Irán , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Congenit Anom (Kyoto) ; 61(6): 220-225, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34272776

RESUMEN

Mesoaxial synostotic syndactyly with phalangeal reduction (MSSD) represents a rare non-syndromic defect with an autosomal recessive pattern of inheritance. Sequence variants in the BHLHA9 gene cause MSSD and to date only a few mutations in this gene have been reported. In the present report, we have described a consanguineous Iranian family segregating MSSD in an autosomal recessive manner. The family had two affected siblings showing evidence of camptodactyly in some fingers, complete syndactyly of the 3rd and 4th fingers with synostoses of the corresponding metacarpals, and associated single phalanx in both right and left hand. Whole exome sequencing (WES) followed by segregation analysis using Sanger sequencing identified a novel homozygous frameshift variation [c.74_74delG p.(G25Afs*55)] in the BHLHA9 gene. This has expanded the spectrum of mutations in the BHLHA9 and will facilitate genetic counseling in Iranian families segregating MSSD-related phenotypes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Sindactilia , Sinostosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dedos , Humanos , Irán , Linaje , Sindactilia/genética , Secuenciación del Exoma
15.
Eur J Hum Genet ; 29(2): 271-279, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32901138

RESUMEN

Trafficking protein particle (TRAPP) complexes, which include the TRAPPC4 protein, regulate membrane trafficking between lipid organelles in a process termed vesicular tethering. TRAPPC4 was recently implicated in a recessive neurodevelopmental condition in four unrelated families due to a shared c.454+3A>G splice variant. Here, we report 23 patients from 17 independent families with an early-infantile-onset neurodegenerative presentation, where we also identified the homozygous variant hg38:11:119020256 A>G (NM_016146.5:c.454+3A>G) in TRAPPC4 through exome or genome sequencing. No other clinically relevant TRAPPC4 variants were identified among any of over 10,000 patients with neurodevelopmental conditions. We found the carrier frequency of TRAPPC4 c.454+3A>G was 2.4-5.4 per 10,000 healthy individuals. Affected individuals with the homozygous TRAPPC4 c.454+3A>G variant showed profound psychomotor delay, developmental regression, early-onset epilepsy, microcephaly and progressive spastic tetraplegia. Based upon RNA sequencing, the variant resulted in partial exon 3 skipping and generation of an aberrant transcript owing to use of a downstream cryptic splice donor site, predicting a premature stop codon and nonsense mediated decay. These data confirm the pathogenicity of the TRAPPC4 c.454+3A>G variant, and refine the clinical presentation of TRAPPC4-related encephalopathy.


Asunto(s)
Homocigoto , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Empalme del ARN , Proteínas de Transporte Vesicular/genética , Niño , Preescolar , Codón sin Sentido , Exoma , Exones , Femenino , Humanos , Masculino , Microcefalia/genética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Linaje , Sitios de Empalme de ARN , Síndrome
16.
Basic Clin Neurosci ; 11(4): 549-556, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33613893

RESUMEN

INTRODUCTION: Whole Exome Sequencing (WES) has been increasingly utilized in genetic determinants of various inherited diseases. METHODS: We applied WES for a patient presenting 3-Methylglutaconic Aciduria (MEG), Deafness (D), Encephalopathy (E), and Leigh-like (L) syndrome. Then Sanger sequencing was used for the detected variant validation. RESULTS: We found an insertion, rs797045105 (chr6, 158571484, C>CCATG), in the SERAC1 gene with homozygous genotype in the patient and heterozygous genotype in her unaffected parents. Notably, bioinformatics analysis using mutation taster (prob>0.99) and DDIGin (prob=86.51) predicted this mutation as disease-causing. Also, the variant was not present in our database, including 700 exome files. CONCLUSION: These findings emphasize the pathogenicity of rs797045105 for MEGDEL syndrome. On the other hand, our data shed light on the significance of WES application as a genetic test to identify and characterize the comprehensive spectrum of genetic variation and classification for patients with neurometabolic disorders.

17.
Int J Prev Med ; 11: 117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33088445

RESUMEN

BACKGROUND: Various blood diseases are caused by mutations in the FANCA, FANCC, and ITGA2B genes. Exome sequencing is a suitable method for identifying single-gene disease and genetic heterogeneity complaints. METHODS: Among families who were referred to Narges Genetic and PND Laboratory in 2015-2017, five families with a history of blood diseases were analyzed using the whole exome sequencing (WES) method. RESULTS: We detected two novel mutations (c.190-2A>G and c.2840C>G) in the FANCA gene, c. 1429dupA mutation in the FANCC gene, and c.1392A>G mutation in the ITGA2B gene. The prediction of variant pathogenicity has been done using bioinformatics tools such as Mutation taster PhD-SNP and polyphen2 and were confirmed by Sanger sequencing. CONCLUSIONS: WES could be as a precise tool for identifying the pathologic variants in affected patient and heterozygous carriers among families. This highly successful technique will remain at the forefront of platelet and blood genomic research.

19.
Nat Commun ; 11(1): 4625, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32934225

RESUMEN

A hallmark of neurodegeneration is defective protein quality control. The E3 ligase Listerin (LTN1/Ltn1) acts in a specialized protein quality control pathway-Ribosome-associated Quality Control (RQC)-by mediating proteolytic targeting of incomplete polypeptides produced by ribosome stalling, and Ltn1 mutation leads to neurodegeneration in mice. Whether neurodegeneration results from defective RQC and whether defective RQC contributes to human disease have remained unknown. Here we show that three independently-generated mouse models with mutations in a different component of the RQC complex, NEMF/Rqc2, develop progressive motor neuron degeneration. Equivalent mutations in yeast Rqc2 selectively interfere with its ability to modify aberrant translation products with C-terminal tails which assist with RQC-mediated protein degradation, suggesting a pathomechanism. Finally, we identify NEMF mutations expected to interfere with function in patients from seven families presenting juvenile neuromuscular disease. These uncover NEMF's role in translational homeostasis in the nervous system and implicate RQC dysfunction in causing neurodegeneration.


Asunto(s)
Enfermedades Neuromusculares/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Mutación , Enfermedades Neuromusculares/genética , Enfermedades Neuromusculares/patología , Proteolisis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
20.
Eur J Med Genet ; 63(10): 104004, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32688057

RESUMEN

De novo pathogenic variants in the GATAD2B gene have been associated with a syndromic neurodevelopmental disorder (GAND) characterized by severe intellectual disability (ID), impaired speech, childhood hypotonia, and dysmorphic features. Since its first description in 2013, nine patients have been reported in case reports and a series of 50 patients was recently published, which is consistent with the relative frequency of GATAD2B pathogenic variants in public databases. We report the detailed phenotype of 19 patients from various ethnic backgrounds with confirmed pathogenic GATAD2B variants including intragenic deletions. All individuals presented developmental delay with a median age of 2.5 years for independent walking and of 3 years for first spoken words. GATAD2B variant carriers showed very little subsequent speech progress, two patients over 30 years of age remaining non-verbal. ID was mostly moderate to severe, with one profound and one mild case, which shows a wider spectrum of disease severity than previously reported. We confirm macrocephaly as a major feature in GAND (53%). Most common dysmorphic features included broad forehead, deeply set eyes, hypertelorism, wide nasal base, and pointed chin. Conversely, prenatal abnormalities, non-cerebral malformations, epilepsy, and autistic behavior were uncommon. Other features included feeding difficulties, behavioral abnormalities, and unspecific abnormalities on brain MRI. Improving our knowledge of the clinical phenotype is essential for correct interpretation of the molecular results and accurate patient management.


Asunto(s)
Factores de Transcripción GATA/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Preescolar , Cara/patología , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Megalencefalia/diagnóstico por imagen , Megalencefalia/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/fisiopatología , Fenotipo , Embarazo , Proteínas Represoras , Eliminación de Secuencia , Trastornos del Habla/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA