Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 602(7898): 664-670, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016195

RESUMEN

The recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine. Most monoclonal antibodies that are directed against the receptor-binding motif lost in vitro neutralizing activity against Omicron, with only 3 out of 29 monoclonal antibodies retaining unaltered potency, including the ACE2-mimicking S2K146 antibody1. Furthermore, a fraction of broadly neutralizing sarbecovirus monoclonal antibodies neutralized Omicron through recognition of antigenic sites outside the receptor-binding motif, including sotrovimab2, S2X2593 and S2H974. The magnitude of Omicron-mediated immune evasion marks a major antigenic shift in SARS-CoV-2. Broadly neutralizing monoclonal antibodies that recognize RBD epitopes that are conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Deriva y Cambio Antigénico/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Pruebas de Neutralización , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Deriva y Cambio Antigénico/genética , Vacunas contra la COVID-19/inmunología , Línea Celular , Convalecencia , Epítopos de Linfocito B/inmunología , Humanos , Evasión Inmune , Ratones , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Vesiculovirus/genética
2.
Br J Haematol ; 197(3): 283-292, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35076084

RESUMEN

Severe COVID-19 is associated with a systemic inflammatory response and progressive CD4+ T-cell lymphopenia and dysfunction. We evaluated whether platelets might contribute to CD4+ T-cell dysfunction in COVID-19. We observed a high frequency of CD4+ T cell-platelet aggregates in COVID-19 inpatients that inversely correlated with lymphocyte counts. Platelets from COVID-19 inpatients but not from healthy donors (HD) inhibited the upregulation of CD25 expression and tumour necrosis factor (TNF)-α production by CD4+ T cells. In addition, interferon (IFN)-γ production was increased by platelets from HD but not from COVID-19 inpatients. A high expression of PD-L1 was found in platelets from COVID-19 patients to be inversely correlated with IFN-γ production by activated CD4+ T cells cocultured with platelets. We also found that a PD-L1-blocking antibody significantly restored platelets' ability to stimulate IFN-γ production by CD4+ T cells. Our study suggests that platelets might contribute to disease progression in COVID-19 not only by promoting thrombotic and inflammatory events, but also by affecting CD4+ T cells functionality.


Asunto(s)
Antígeno B7-H1 , COVID-19 , Antígeno B7-H1/metabolismo , Plaquetas/metabolismo , Linfocitos T CD4-Positivos , Humanos , Interferón gamma
3.
J Infect Dis ; 224(4): 575-585, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34398243

RESUMEN

Severe coronavirus disease 2019 (COVID-19) is associated with an overactive inflammatory response mediated by macrophages. Here, we analyzed the phenotype and function of neutrophils in patients with COVID-19. We found that neutrophils from patients with severe COVID-19 express high levels of CD11b and CD66b, spontaneously produce CXCL8 and CCL2, and show a strong association with platelets. Production of CXCL8 correlated with plasma concentrations of lactate dehydrogenase and D-dimer. Whole blood assays revealed that neutrophils from patients with severe COVID-19 show a clear association with immunoglobulin G (IgG) immune complexes. Moreover, we found that sera from patients with severe disease contain high levels of immune complexes and activate neutrophils through a mechanism partially dependent on FcγRII (CD32). Interestingly, when integrated in immune complexes, anti-severe acute respiratory syndrome coronavirus 2 IgG antibodies from patients with severe COVID-19 displayed a higher proinflammatory profile compared with antibodies from patients with mild disease. Our study suggests that IgG immune complexes might promote the acquisition of an inflammatory signature by neutrophils, worsening the course of COVID-19.


Asunto(s)
Anticuerpos Antivirales/inmunología , Complejo Antígeno-Anticuerpo/inmunología , COVID-19/inmunología , Inmunoglobulina G/inmunología , Activación Neutrófila/inmunología , Adulto , Anciano , Anticuerpos Antivirales/sangre , Complejo Antígeno-Anticuerpo/sangre , Antígenos CD/inmunología , Antígeno CD11b/inmunología , Moléculas de Adhesión Celular/inmunología , Femenino , Proteínas Ligadas a GPI/inmunología , Humanos , Inmunoglobulina G/sangre , Interleucina-8/inmunología , Masculino , Persona de Mediana Edad , Neutrófilos/inmunología , Receptores de IgG/inmunología , SARS-CoV-2/inmunología , Adulto Joven
4.
Cell Rep ; 42(3): 112156, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36842088

RESUMEN

Monocytes can differentiate into macrophages (Mo-Macs) or dendritic cells (Mo-DCs). The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the differentiation of monocytes into Mo-Macs, while the combination of GM-CSF/interleukin (IL)-4 is widely used to generate Mo-DCs for clinical applications and to study human DC biology. Here, we report that pharmacological inhibition of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) in the presence of GM-CSF and the absence of IL-4 induces monocyte differentiation into Mo-DCs. Remarkably, we find that simultaneous inhibition of PPARγ and the nutrient sensor mammalian target of rapamycin complex 1 (mTORC1) induces the differentiation of Mo-DCs with stronger phenotypic stability, superior immunogenicity, and a transcriptional profile characterized by a strong type I interferon (IFN) signature, a lower expression of a large set of tolerogenic genes, and the differential expression of several transcription factors compared with GM-CSF/IL-4 Mo-DCs. Our findings uncover a pathway that tailors Mo-DC differentiation with potential implications in the fields of DC vaccination and cancer immunotherapy.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Monocitos , Humanos , Monocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , PPAR gamma/metabolismo , Interleucina-4/farmacología , Interleucina-4/metabolismo , Células Dendríticas/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas
5.
Front Immunol ; 13: 831844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720394

RESUMEN

High salt (NaCl) concentrations are found in a number of tissues under physiological and pathological conditions. Here, we analyzed the effects induced by high salt on the function of human neutrophils. The culture of neutrophils in medium supplemented with high salt (50 mM NaCl) for short periods (30-120 min) inhibited the ability of conventional agonists to induce the production of IL-8 and the activation of respiratory burst. By contrast, exposure to high salt for longer periods (6-18 h) resulted in the activation of neutrophils revealed by the production of high levels of IL-8, the activation of the respiratory burst, and a marked synergistic effect on the production of TNF-α induced by LPS. Increasing osmolarity of the culture medium by the addition of sorbitol or mannitol (100 mM) was shown to be completely unable to stimulate neutrophil responses, suggesting that high sodium but not an increased osmolarity mediates the activation on neutrophils responses. A similar biphasic effect was observed when the function of monocytes was analyzed. Short term exposure to high salt suppressed IL-8 and TNF-α production induced by LPS while culture for longer periods triggered the production of IL-8 but not TNF-α in the absence of LPS stimulation. Contradictory results have been published regarding how high salt modulates neutrophil function. Our results suggest that the modulation of neutrophil function by high salt is strongly dependent on the exposure time.


Asunto(s)
Neutrófilos , Factor de Necrosis Tumoral alfa , Humanos , Interleucina-8/farmacología , Lipopolisacáridos/farmacología , Neutrófilos/patología , Cloruro de Sodio/farmacología , Factor de Necrosis Tumoral alfa/farmacología
6.
Antibodies (Basel) ; 11(1)2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35076465

RESUMEN

Mass-vaccination against COVID-19 is still a distant goal for most low-to-middle income countries. The experience gained through decades producing polyclonal immunotherapeutics (such as antivenoms) in many of those countries is being redirected to develop similar products able to neutralize SARS-CoV-2 infection. In this study we analyzed the biological activity (viral neutralization or NtAb) and immunochemical properties of hyperimmune horses' sera (HHS) obtained during initial immunization (I) and posterior re-immunization (R) cycles using the RBD domain of the SARS-CoV-2 spike protein as antigen. HHS at the end of the R cycle showed higher NtAb titers when compared to those after the I cycle (35,585 vs. 7000 mean NtAb, respectively). Moreover, this increase paralleled an increase in avidity (95.2% to 65.2% mean avidity units, respectively). The results presented herein are relevant for manufacturers of these therapeutic tools against COVID-19.

7.
Lancet Reg Health Am ; 9: 100196, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35128512

RESUMEN

BACKGROUND: Shortages of component two of Sputnik V vaccine (rAd5) are delaying the possibility of achieving full immunisation. The immunogenic response associated with the use of alternative schemes to complete the scheme was not explored. METHODS: We did two non-inferiority randomized clinical trials with outcomes measures blinded to investigators on adults aged 21-65 years, vaccinated with a single dose of rAd26 ≥ 30 days before screening and no history of SARS-CoV-2. Participants were assigned (1:1:1:1:1) to receive either rAd5; ChAdOx1; rAd26; mRNA-1273 or BBIBP-CorV. The primary endpoint was the geometric mean ratio (GMR) of SARS-CoV-2 anti-spike IgG concentration at 28 days after the second dose, when comparing rAd26/rAd5 with rAd26/ChAdOx1, rAd26/rAd26, rAd26/mRNAmRNA-1273 and rAd26/BBIBP-CorV. Serum neutralizing capacity was evaluated using wild type SARS-CoV-2 reference strain 2019 B.1. The safety outcome was 28-day rate of serious adverse. The primary analysis included all participants who received ≥ 1 dose. The studies were registered with NCT04962906 and NCT05027672. Both trials were conducted in Buenos Aires, Argentina. FINDINGS: Between July 6 and August 3, 2021, 540 individuals (age 56·7 [SD 7·3]; 243 (45%) women) were randomly assigned to received rAd5 (n=150); ChAdOx1 (n=150); rAd26 (N=87); mRNAmRNA-1273 (n=87) or BBIBP-CorV (n=65). 524 participants completed the study. As compared with rAd26/rAd5 (1·00), the GMR (95%CI) at day 28 was 0·65 (0·51-0·84) among those who received ChAdOx1; 0·47 (0·34-0·66) in rAd5; 3·53 (2·68-4·65) in mRNA-1273 and 0·23 (0·16-0·33) in BBIBP-CorV. The geometric mean (IU/ml) from baseline to day 28 within each group increased significantly with ChAdOx1 (4·08 (3·07-5·43)); rAd26 (2·69 (1·76-4·11)); mRNA-1273 (21·98 (15·45-31·08)) but not in BBIBP-CorV (1·22 (0·80-1·87)). INTERPRETATION: Except for mRNA-1273 which proved superior, in all other alternatives non-inferiority was rejected. Antibody concentration increased in all non-replicating viral vector and RNA platforms. FUNDING: The trials were supported (including funding, material support in the form of vaccines and testing supplies) by the Buenos Aires City Government.

8.
Front Immunol ; 13: 844837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35296091

RESUMEN

In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8+ T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.


Asunto(s)
Adyuvantes Inmunológicos/metabolismo , Linfocitos B/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Brucella/metabolismo , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Centro Germinal/inmunología , SARS-CoV-2/fisiología , Compuestos de Alumbre/metabolismo , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales , Formación de Anticuerpos , Proteínas de la Membrana Bacteriana Externa/inmunología , Brucella/inmunología , Resistencia a la Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Glicoproteína de la Espiga del Coronavirus/inmunología
9.
bioRxiv ; 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35313570

RESUMEN

The SARS-CoV-2 Omicron variant of concern comprises three sublineages designated BA.1, BA.2, and BA.3, with BA.2 steadily replacing the globally dominant BA.1. We show that the large number of BA.1 and BA.2 spike mutations severely dampen plasma neutralizing activity elicited by infection or seven clinical vaccines, with cross-neutralization of BA.2 being consistently more potent than that of BA.1, independent of the vaccine platform and number of doses. Although mRNA vaccines induced the greatest magnitude of Omicron BA.1 and BA.2 plasma neutralizing activity, administration of a booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1 and BA.2 across all vaccines evaluated. Our data suggest that although BA.1 and BA.2 evade polyclonal neutralizing antibody responses, current vaccine boosting regimens may provide sufficient protection against Omicron-induced disease.

10.
EBioMedicine ; 83: 104230, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35988465

RESUMEN

BACKGROUND: Despite that pediatric COVID-19 is usually asymptomatic or mild, SARS-CoV-2 infection typically results in the development of an antibody response. Contradictory observations have been reported when the antibody response of children and adults were compared in terms of strength, specificity and perdurability. METHODS: This observational study includes three cohorts infected with SARS-CoV-2 between March 2020-July 2021: unvaccinated infected children (n=115), unvaccinated infected adults (n=62), and vaccinated infected children (n=76). Plasma anti-spike IgG antibodies and neutralising activity against Wuhan, Delta and Omicron variants after 7-17 months post-infection were analysed. FINDINGS: More than 95% of unvaccinated infected children and adults remained seropositive when evaluated at 382-491 and 386-420 days after infection, respectively. Anti-spike IgG titers and plasma neutralising activity against Wuhan, Delta and Omicron variants were higher in children compared to adults. No differences were found when unvaccinated infected children were stratified by age, gender or presence/absence of symptoms in the acute phase of SARS-CoV-2 infection, but a slight decrease in the antibody response was observed in those with comorbidities. Vaccination of previously infected children with two doses of the inactivated BBIBP-CorV or the mRNA vaccines, BNT162b2 and/or mRNA-1273, further increased anti-spike IgG titers and neutralising activity against Wuhan, Delta and Omicron variants. INTERPRETATION: Unvaccinated infected children mount a more potent and sustained antibody response compared with adults, which is significantly increased after vaccination. Further studies including not only the analysis of the immune response but also the effectiveness to prevent reinfections by the different Omicron lineages are required to optimise vaccination strategy in children. FUNDING: National Agency for Scientific and Technological Promotion from Argentina (PICTO-COVID-SECUELAS-00007 and PMO-BID-PICT2018-2548).


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Vacuna BNT162 , Niño , Estudios de Cohortes , Humanos , Inmunoglobulina G
11.
Science ; 377(6608): 890-894, 2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35857529

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern comprises several sublineages, with BA.2 and BA.2.12.1 having replaced the previously dominant BA.1 and with BA.4 and BA.5 increasing in prevalence worldwide. We show that the large number of Omicron sublineage spike mutations leads to enhanced angiotensin-converting enzyme 2 (ACE2) binding, reduced fusogenicity, and severe dampening of plasma neutralizing activity elicited by infection or seven clinical vaccines relative to the ancestral virus. Administration of a homologous or heterologous booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1, BA.2, BA.2.12.1, BA.4, and BA.5 across all vaccines evaluated. Our data suggest that although Omicron sublineages evade polyclonal neutralizing antibody responses elicited by primary vaccine series, vaccine boosters may provide sufficient protection against Omicron-induced severe disease.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Humanos , Inmunización Secundaria , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
12.
mBio ; 13(1): e0344221, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073758

RESUMEN

Recent studies have shown a temporal increase in the neutralizing antibody potency and breadth to SARS-CoV-2 variants in coronavirus disease 2019 (COVID-19) convalescent individuals. Here, we examined longitudinal antibody responses and viral neutralizing capacity to the B.1 lineage virus (Wuhan related), to variants of concern (VOC; Alpha, Beta, Gamma, and Delta), and to a local variant of interest (VOI; Lambda) in volunteers receiving the Sputnik V vaccine in Argentina. Longitudinal serum samples (N = 536) collected from 118 volunteers obtained between January and October 2021 were used. The analysis indicates that while anti-spike IgG levels significantly wane over time, the neutralizing capacity for the Wuhan-related lineages of SARS-CoV-2 and VOC is maintained within 6 months of vaccination. In addition, an improved antibody cross-neutralizing ability for circulating variants of concern (Beta and Gamma) was observed over time postvaccination. The viral variants that displayed higher escape to neutralizing antibodies with respect to the original virus (Beta and Gamma variants) were the ones showing the largest increase in susceptibility to neutralization over time after vaccination. Our observations indicate that serum neutralizing antibodies are maintained for at least 6 months and show a reduction of VOC escape to neutralizing antibodies over time after vaccination. IMPORTANCE Vaccines have been produced in record time for SARS-CoV-2, offering the possibility of halting the global pandemic. However, inequalities in vaccine accessibility in different regions of the world create a need to increase international cooperation. Sputnik V is a recombinant adenovirus-based vaccine that has been widely used in Argentina and other developing countries, but limited information is available about its elicited immune responses. Here, we examined longitudinal antibody levels and viral neutralizing capacity elicited by Sputnik V vaccination. Using a cohort of 118 volunteers, we found that while anti-spike antibodies wane over time, the neutralizing capacity to viral variants of concern and local variants of interest is maintained within 4 months of vaccination. In addition, we observed an increased cross-neutralization activity over time for the Beta and Gamma variants. This study provides valuable information about the immune response generated by a vaccine platform used in many parts of the world.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Estudios Longitudinales , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico
13.
Cell Rep Med ; 3(8): 100706, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35926505

RESUMEN

Heterologous vaccination against coronavirus disease 2019 (COVID-19) provides a rational strategy to rapidly increase vaccination coverage in many regions of the world. Although data regarding messenger RNA (mRNA) and ChAdOx1 vaccine combinations are available, there is limited information about the combination of these platforms with other vaccines widely used in developing countries, such as BBIBP-CorV and Sputnik V. Here, we assess the immunogenicity and reactogenicity of 15 vaccine combinations in 1,314 participants. We evaluate immunoglobulin G (IgG) anti-spike response and virus neutralizing titers and observe that a number of heterologous vaccine combinations are equivalent or superior to homologous schemes. For all cohorts in this study, the highest antibody response is induced by mRNA-1273 as the second dose. No serious adverse events are detected in any of the schedules analyzed. Our observations provide rational support for the use of different vaccine combinations to achieve wide vaccine coverage in the shortest possible time.


Asunto(s)
COVID-19 , Vacunas Virales , Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Inmunización , ARN Mensajero/genética , SARS-CoV-2 , Vacunación
14.
Sci Immunol ; 7(78): eadf1421, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36356052

RESUMEN

Numerous safe and effective coronavirus disease 2019 vaccines have been developed worldwide that use various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S as compared with vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity, and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated solely by receptor binding domain-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants than current technologies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunación , Anticuerpos Neutralizantes , Vacunas contra la COVID-19
15.
bioRxiv ; 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34981060

RESUMEN

Numerous safe and effective COVID-19 vaccines have been developed that utilize various delivery technologies and engineering strategies. The influence of the SARS-CoV-2 spike (S) glycoprotein conformation on antibody responses induced by vaccination or infection in humans remains unknown. To address this question, we compared plasma antibodies elicited by six globally-distributed vaccines or infection and observed markedly higher binding titers for vaccines encoding a prefusion-stabilized S relative to other groups. Prefusion S binding titers positively correlated with plasma neutralizing activity, indicating that physical stabilization of the prefusion conformation enhances protection against SARS-CoV-2. We show that almost all plasma neutralizing activity is directed to prefusion S, in particular the S 1 subunit, and that variant cross-neutralization is mediated solely by RBD-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants and longer durability than current technologies.

16.
Cell Rep Med ; 2(8): 100359, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34308389

RESUMEN

Massive vaccination offers great promise for halting the global COVID-19 pandemic. However, the limited supply and uneven vaccine distribution create an urgent need to optimize vaccination strategies. We evaluate SARS-CoV-2-specific antibody responses after Sputnik V vaccination of healthcare workers in Argentina, measuring IgG anti-spike titers and neutralizing capacity after one and two doses in a cohort of naive or previously infected volunteers. By 21 days after receiving the first dose of the vaccine, 94% of naive participants develop spike-specific IgG antibodies. A single Sputnik V dose elicits higher antibody levels and virus-neutralizing capacity in previously infected individuals than in naive ones receiving the full two-dose schedule. The high seroconversion rate after a single dose in naive participants suggests a benefit of delaying administration of the second dose to increase the number of people vaccinated. The data presented provide information for guiding public health decisions in light of the current global health emergency.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas Sintéticas/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Argentina/epidemiología , COVID-19/inmunología , Chlorocebus aethiops , Células HEK293 , Personal de Salud , Humanos , Pandemias , SARS-CoV-2/patogenicidad , Seroconversión , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Vacunas , Células Vero
17.
bioRxiv ; 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34931194

RESUMEN

The recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals. Most (26 out of 29) receptor-binding motif (RBM)-directed monoclonal antibodies (mAbs) lost in vitro neutralizing activity against Omicron, with only three mAbs, including the ACE2-mimicking S2K146 mAb 1 , retaining unaltered potency. Furthermore, a fraction of broadly neutralizing sarbecovirus mAbs recognizing antigenic sites outside the RBM, including sotrovimab 2 , S2X259 3 and S2H97 4 , neutralized Omicron. The magnitude of Omicron-mediated immune evasion and the acquisition of binding to mouse ACE2 mark a major SARS-CoV-2 mutational shift. Broadly neutralizing sarbecovirus mAbs recognizing epitopes conserved among SARS-CoV-2 variants and other sarbecoviruses may prove key to controlling the ongoing pandemic and future zoonotic spillovers.

18.
Cell Rep ; 31(5): 107613, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32375041

RESUMEN

During inflammation, recruited monocytes can differentiate either into macrophages or dendritic cells (DCs); however, little is known about the environmental factors that determine this cell fate decision. Low extracellular pH is a hallmark of a variety of inflammatory processes and solid tumors. Here, we report that low pH dramatically promotes the differentiation of monocytes into DCs (monocyte-derived DCs [mo-DCs]). This process is associated with a reduction in glucose consumption and lactate production, the upregulation of mitochondrial respiratory chain genes, and the inhibition of mTORC1 activity. Interestingly, we also find that both serum starvation and pharmacological inhibition of mTORC1 markedly promote the differentiation of mo-DCs. Our study contributes to better understanding the mechanisms that govern the differentiation of monocytes into DCs and reveals the role of both extracellular pH and mTORC1 as master regulators of monocyte cell fate.


Asunto(s)
Diferenciación Celular/fisiología , Células Dendríticas/citología , Monocitos/citología , Serina-Treonina Quinasas TOR/metabolismo , Citocinas/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA