Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(1)2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36615582

RESUMEN

Plastic pollution has become a global environmental threat, which leads to an increasing concern over the consequences of plastic exposition on global health. Plastic nanoparticles have been shown to influence the folding of proteins and influence the formation of aberrant amyloid proteins, therefore potentially triggering the development of systemic and local amyloidosis. This work aims to study the interaction between nanoplastics and ß-amyloid fibrils to better understand the potential role of nanoplastics in the outbreak of neurodegenerative disorders. Using microsecond-long coarse-grained molecular dynamics simulations, we investigated the interactions between neutral and charged nanoparticles made of the most common plastic materials (i.e., polyethylene, polypropylene, and polystyrene) and ß-amyloid fibrils. We observe that the occurrence of contacts, region of amyloid fibril involved, and specific amino acids mediating the interaction depend on the type and charge of the nanoparticles.


Asunto(s)
Amiloide , Amiloidosis , Humanos , Amiloide/química , Microplásticos , Proteínas Amiloidogénicas , Simulación de Dinámica Molecular , Péptidos beta-Amiloides/metabolismo
2.
Adv Exp Med Biol ; 1383: 45-53, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36587145

RESUMEN

In the last decade, we characterized an enteric neuronal subpopulation of multifunctional mechanosensitive enteric neurons (MEN) while studying the gastrointestinal peristalsis. MEN have been described in a variety of gastrointestinal regions and species. This chapter summarizes existing data on MEN, describing their proportions, firing behaviors, adaptation musters, and chemical phenotypes. We also discuss MEN sensitivity to different mechanical stimulus qualities such as compression and tension along with pharmacology of their responses.


Asunto(s)
Sistema Nervioso Entérico , Neuronas , Intestino Delgado , Peristaltismo , Sistema Nervioso Entérico/fisiología
3.
Adv Physiol Educ ; 46(1): 145-157, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34882486

RESUMEN

In endothermic mammals total energy expenditure (EE) is composed of basal metabolic rate (BMR), energy spent for muscle activity, thermoregulation, any kind of production (such as milk, meat, or egg production), and the thermic effect of feeding. The BMR is predominantly determined by body mass and the surface-to-volume ratio of the body. The EE can be quantified by either direct or indirect calorimetry. Direct calorimetry measures the rate of heat loss from the body, whereas indirect calorimetry measures oxygen consumption and carbon dioxide production and calculates heat production from oxidative nutrient combustion. A deep and sustainable understanding of EE in animals is crucial for veterinarians to properly calculate and evaluate feed rations during special circumstances such as anesthesia or in situations with increased energy demands as commonly seen in high-yielding livestock. The practical class described in this article provides an experimental approach to understanding how EE can be measured and calculated by indirect calorimetry. Two important factors that affect the EE of animals (the thermic effect of feeding and the effect of ambient temperature) are measured. A profound knowledge about the energy requirements of animal life and its measurement is also relevant for education in general biology, animal and human physiology, and nutrition. Therefore, this teaching unit can equally well be implemented in other areas of life sciences.


Asunto(s)
Metabolismo Energético , Consumo de Oxígeno , Animales , Regulación de la Temperatura Corporal , Calorimetría Indirecta , Humanos , Ratones , Estudiantes
4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36142234

RESUMEN

A significant portion of the world's plastic is not properly disposed of and, through various processes, is degraded into microscopic particles termed micro- and nanoplastics. Marine and terrestrial faunae, including humans, inevitably get in contact and may inhale and ingest these microscopic plastics which can deposit throughout the body, potentially altering cellular and molecular functions in the nervous and other systems. For instance, at the cellular level, studies in animal models have shown that plastic particles can cross the blood-brain barrier and interact with neurons, and thus affect cognition. At the molecular level, plastics may specifically influence the folding of proteins, induce the formation of aberrant amyloid proteins, and therefore potentially trigger the development of systemic and local amyloidosis. In this review, we discuss the general issue of plastic micro- and nanoparticle generation, with a focus on their effects on protein folding, misfolding, and their possible clinical implications.


Asunto(s)
Amiloidosis , Contaminantes Químicos del Agua , Proteínas Amiloidogénicas , Amiloidosis/etiología , Animales , Humanos , Microplásticos , Plásticos , Pliegue de Proteína , Contaminantes Químicos del Agua/análisis
5.
BMC Vet Res ; 17(1): 175, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902575

RESUMEN

BACKGROUND: Ischaemic postconditioning (IPoC) refers to brief periods of reocclusion of blood supply following an ischaemic event. This has been shown to ameliorate ischaemia reperfusion injury in different tissues, and it may represent a feasible therapeutic strategy for ischaemia reperfusion injury following strangulating small intestinal lesions in horses. The objective of this study was to assess the degree cell death, inflammation, oxidative stress, and heat shock response in an equine experimental jejunal ischaemia model with and without IPoC. METHODS: In this randomized, controlled, experimental in vivo study, 14 horses were evenly assigned to a control group and a group subjected to IPoC. Under general anaesthesia, segmental ischaemia with arterial and venous occlusion was induced in 1.5 m jejunum. Following ischaemia, the mesenteric vessels were repeatedly re-occluded in group IPoC only. Full thickness intestinal samples and blood samples were taken at the end of the pre-ischaemia period, after ischaemia, and after 120 min of reperfusion. Immunohistochemical staining or enzymatic assays were performed to determine the selected variables. RESULTS: The mucosal cleaved-caspase-3 and TUNEL cell counts were significantly increased after reperfusion in the control group only. The cleaved-caspase-3 cell count was significantly lower in group IPoC after reperfusion compared to the control group. After reperfusion, the tissue myeloperoxidase activity and the calprotectin positive cell counts in the mucosa were increased in both groups, and only group IPoC showed a significant increase in the serosa. Tissue malondialdehyde and superoxide dismutase as well as blood lactate levels showed significant progression during ischaemia or reperfusion. The nuclear immunoreactivity of Heat shock protein-70 increased significantly during reperfusion. None of these variables differed between the groups. The neuronal cell counts in the myenteric plexus ganglia were not affected by the ischaemia model. CONCLUSIONS: A reduced apoptotic cell count was found in the group subjected to IPoC. None of the other tested variables were significantly affected by IPoC. Therefore, the clinical relevance and possible protective mechanism of IPoC in equine intestinal ischaemia remains unclear. Further research on the mechanism of action and its effect in clinical cases of strangulating colic is needed.


Asunto(s)
Apoptosis , Poscondicionamiento Isquémico/veterinaria , Yeyuno/irrigación sanguínea , Daño por Reperfusión/veterinaria , Animales , Proteínas HSP70 de Choque Térmico/metabolismo , Caballos , Mucosa Intestinal/metabolismo , Poscondicionamiento Isquémico/métodos , Yeyuno/patología , Ácido Láctico/sangre , Malondialdehído/metabolismo , Daño por Reperfusión/terapia , Superóxido Dismutasa/metabolismo
6.
J Physiol ; 598(23): 5317-5332, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32880976

RESUMEN

KEY POINTS: Neurons of the enteric submucous plexus are challenged by osmolar fluctuations during digestion and absorption of nutrients. Central neurons are very sensitive to changes in osmolality but knowledge on that issue related to enteric neurons is sparse. The present study focuses on investigation of osmosensitivity of submucosal neurons including potential molecular mediating mechanisms. Results show that submucosal neurons respond to hypoosmolar stimuli with increased activity which is partially mediated by the transient receptor potential vanilloid 4 channel. We provided important information on osmosensitive properties of enteric neurons. These data are fundamental to better explain the nerve-mediated control of the gastrointestinal functions during physiological and pathophysiological (diarrhoea) conditions. ABSTRACT: Enteric neurons are located inside the gut wall, where they are confronted with changes in osmolality during (inter-) digestive periods. In particular, neurons of the submucous plexus (SMP), located between epithelial cells and blood vessels may sense and respond to osmotic shifts. The present study was conducted to investigate osmosensitivity of enteric submucosal neurons and the potential role of the transient receptor potential vanilloid 4 channel (TRPV4) as a mediator of enteric neuronal osmosensitivity. Therefore, freshly dissected submucosal preparations from guinea pig colon were investigated for osmosensitivity using voltage-sensitive dye and Ca2+ imaging. Acute hypoosmolar stimuli (final osmolality reached at ganglia of 94, 144 and 194 mOsm kg-1 ) were applied to single ganglia using a local perfusion system. Expression of TRPV4 in the SMP was quantified using qRT-PCR, and GSK1016790A and HC-067047 were used to activate or block the receptor, respectively, revealing its relevance in enteric osmosensitivity. On average, 11.0 [7.0/17.0] % of submucosal neurons per ganglion responded to the hypoosmolar stimulus. The Ca2+ imaging experiments showed that glia responded to the hypoosmolar stimulus, but with a delay in comparison with neurons. mRNA expression of TRPV4 could be shown in the SMP and blockade of the receptor by HC-067047 significantly decreased the number of responding neurons (0.0 [0.0/6.3] %) while the TRPV4 agonist GSK1016790A caused action potential discharge in a subpopulation of osmosensitive enteric neurons. The results of the present study provide insight into the osmosensitivity of submucosal enteric neurons and strongly indicate the involvement of TRPV4 as an osmotransducer.


Asunto(s)
Plexo Mientérico , Plexo Submucoso , Animales , Colon , Cobayas , Neuroglía , Neuronas
7.
Cell Tissue Res ; 375(3): 605-618, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30324494

RESUMEN

Piezo channels play fundamental roles in many physiological processes. Their presence and functional role in the enteric nervous system is still not known. We hypothesize that they play a role in mechanotransduction in enteric neurons. Our aims are to quantify the presence of both Piezo1 and 2 in enteric neurons throughout the gastrointestinal tract using immunohistochemistry and analyze their function(s) using neuroimaging techniques and pharmacological investigations. In order to perform a systematic and comparative study, we performed our experiments in gastrointestinal tissue from guinea pigs, mice and humans. Piezo1 (20-70%) is expressed by both enteric neuronal cell bodies and fibers in the myenteric and submucosal plexi of all the species investigated. Generally, Piezo1 expressing somata are more numerous in the submucosal plexus (50-80%) than in the myenteric plexus (15-35%) apart from the stomach where Piezo1 is expressed in up to 60% of cell bodies. Myenteric Piezo1 neurons mainly (60-100%) but not exclusively, also express nitric oxide synthase, a minority express choline acetyltransferase. In the submucosal plexus, Piezo1 neurons co-express vasoactive intestinal peptide (40-90%). Conversely, expression of Piezo2 is extremely rare in the somata of enteric neurons and is present in few neurites. In functional experiments, 38-76% of the mechanosensitive neurons expressed Piezo1 channels. Statistical analysis showed a positive significant correlation between mechanosensitive and Piezo1 positive neurons. However, pharmacological experiments using an activator and an inhibitor of Piezo channels did not demonstrate changes in mechanotransduction. A major role of Piezo1 in the mechanosensitivity of enteric neurons can be excluded.


Asunto(s)
Sistema Nervioso Entérico/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Animales , Femenino , Cobayas , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neuronas/metabolismo
8.
Cell Tissue Res ; 377(2): 281, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31065799

RESUMEN

The Authors regret forgetting in the original version of this article to mention that this work was also supported by the US National Institute of Health (NIH) (1OT2OD024899-01).

9.
Exp Physiol ; 99(10): 1299-311, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24951498

RESUMEN

Based on the discomfort/pain threshold during rectal distension, irritable bowel syndrome (IBS) patients may be subtyped as normo- or hypersensitive. We previously showed that mucosal biopsy supernatants from IBS patients activated enteric and visceral afferent neurons. We tested the hypothesis that visceral sensitivity is linked to the degree of neuronal activation. Normo- and hypersensitive IBS patients were distinguished by their discomfort/pain threshold to rectal balloon distension with a barostat. Using potentiometric and Ca(2+) dye imaging, we recorded the response of guinea-pig enteric submucous and mouse dorsal root ganglion (DRG) neurons, respectively, to mucosal biopsy supernatants from normosensitive (n = 12 tested in enteric neurons, n = 9 tested in DRG) and hypersensitive IBS patients (n = 9, tested in both types of neurons). In addition, we analysed the association between neuronal activation and individual discomfort/pain pressure thresholds. The IBS supernatants evoked Ca(2+) transients in DRG neurons and spike discharge in submucous neurons. Submucous and DRG neurons showed significantly stronger responses to supernatants from hypersensitive IBS patients as reflected by higher spike frequency or stronger [Ca(2+)]i transients in a larger proportion of neurons. The neuroindex as a product of spike frequency or [Ca(2+)]i transients and proportion of responding neurons correlated significantly with the individual discomfort/pain thresholds of the IBS patients. Supernatants from hypersensitive IBS patients caused stronger activation of enteric and DRG neurons. The level of activation correlated with the individual discomfort/pain threshold pressure values. These findings support our hypothesis that visceral sensitivity is linked to activation of peripheral neurons by biopsy supernatants.


Asunto(s)
Mucosa Intestinal/fisiopatología , Síndrome del Colon Irritable/fisiopatología , Neuronas/fisiología , Adulto , Animales , Biopsia , Señalización del Calcio/fisiología , Sistema Nervioso Entérico/fisiopatología , Femenino , Ganglios Espinales/fisiopatología , Cobayas , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/patología , Masculino , Ratones , Persona de Mediana Edad , Neuronas/patología , Umbral del Dolor , Adulto Joven
10.
Neurogastroenterol Motil ; 36(9): e14858, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38946168

RESUMEN

BACKGROUND: Serving as a reservoir, the gastric fundus can expand significantly, with an initial receptive and a following adaptive relaxation, controlled by extrinsic and intrinsic reflex circuits, respectively. We hypothesize that mechanosensitive enteric neurons (MEN) are involved in the adaptive relaxation, which is initiated when a particular gastric volume and a certain stretch of the stomach wall is reached. To investigate whether the responsiveness of MEN in the gastric fundus is dependent on tissue stretch, we performed mechanical stimulations in stretched versus ganglia "at rest". METHODS: Responses of myenteric neurons in the guinea pig gastric fundus were recorded with membrane potential imaging using Di-8-ANEPPS. MEN were identified by small-volume intraganglionic injection in ganglia stretched to different degrees using a self-constructed stretching tool. Immunohistochemical staining identified the neurochemical phenotype of MEN. Hexamethonium and capsaicin were added to test their effect on recruited MEN. KEY RESULTS: In stretched compared to "at rest" ganglia, significantly more MEN were activated. The change in the ganglionic area correlated significantly with the number of additional recruited MEN. The additional recruitment of MEN was independent from nicotinic transmission and the ratio of active MEN in stretched ganglia shifted towards a nitrergic phenotype. CONCLUSION AND INFERENCES: The higher number of active MEN with increasing stretch of the ganglia and their greater share of nitrergic phenotype might indicate their contribution to the adaptive relaxation. Further experiments are necessary to address the receptors involved in mechanotransduction.


Asunto(s)
Fundus Gástrico , Animales , Cobayas , Fundus Gástrico/fisiología , Masculino , Sistema Nervioso Entérico/fisiología , Neuronas/fisiología , Plexo Mientérico/fisiología , Plexo Mientérico/citología , Mecanorreceptores/fisiología
11.
Front Physiol ; 15: 1392080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863475

RESUMEN

Parturition in dogs is subjected to complex hormonal regulation, with the involvement of prostaglandin F2α (PGF2α) still not fully understood. To investigate uterine inertia (UI), the most prevalent maternal reason for dystocia in the bitch, a better understanding of undisturbed uterine, especially myometrial function, is crucial. Our aim was to gain deeper insights into the role of PGF2α in the canine parturient myometrium. Uterine biopsies were obtained during medically indicated cesarean sections. To test for stimulatory effects of PGF2α in vitro, circular and longitudinal myometrial layer tissue strips were challenged with 50 pM, 0.5 µM, and 50 µM PGF2α. Prostaglandin-endoperoxide synthase 2 (PTGS2) and PGF2α-receptor (PTGFR) mRNA expressions were compared between primary UI (PUI) and obstructive dystocia (OD) samples in isolated parturient myometrium. PTGFR protein expression was assessed in full thickness uterine samples. PGF2α concentrations were analyzed in canine interplacental tissue around term. In the organ bath, the contractile response to PGF2α was limited to the circular layer at the highest dosage. Correspondingly, PTGFR immunohistochemical staining was significantly stronger in the circular layer (p ≤ 0.01). PTGS2 gene expression did not differ between PUI and OD, whereas PTGFR gene expression could not be quantified. Local uterine PGF2α concentrations correlated negatively with serum P4 levels and were the highest during prepartum luteolysis while being significantly lower in PUI. Conclusively, despite the significant increase in local PGF2α concentrations at birth, confirming the interplacental tissue as a production site, our results suggest that PGF2α might affect uterine contractility during labor, mainly indirectly.

12.
Front Neurosci ; 18: 1281840, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356649

RESUMEN

Introduction: Alterations in the composition and function of the gut microbiome have been reported in idiopathic epilepsy (IE), however, interactions of gut microbes with the enteric nervous system (ENS) in this context require further study. This pilot study examined how gastrointestinal microbiota (GIM), their metabolites, and nutrients contained in intestinal contents communicate with the ENS. Methods: Fecal supernatants (FS) from healthy dogs and dogs with IE, including drug-naïve, phenobarbital (PB) responsive, and PB non-responsive dogs, were applied to cultured myenteric neurons to test their activation using voltage-sensitive dye neuroimaging. Additionally, the concentrations of short-chain fatty acids (SCFAs) in the FS were quantified. Results: Our findings indicate that FS from all examined groups elicited neuronal activation. Notably, FS from PB non-responsive dogs with IE induced action potential discharge in a higher proportion of enteric neurons compared to healthy controls, which exhibited the lowest burst frequency overall. Furthermore, the highest burst frequency in enteric neurons was observed upon exposure to FS from drug-naïve dogs with IE. This frequency was significantly higher compared to that observed in PB non-responsive dogs with IE and showed a tendency to surpass that of healthy controls. Discussion: Although observed disparities in SCFA concentrations across the various FS samples might be associated with the induced neuronal activity, a direct correlation remains elusive at this point. The obtained results hint at an involvement of the ENS in canine IE and set the basis for future studies.

13.
Neurogastroenterol Motil ; 35(11): e14674, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37702071

RESUMEN

BACKGROUND: Coping with the ingested food, the gastric regions of fundus, corpus, and antrum display different motility patterns. Intrinsic components of such patterns involving mechanosensitive enteric neurons (MEN) have been described in the guinea pig gastric corpus but are poorly understood in the fundus and antrum. METHODS: To elucidate mechanosensitive properties of myenteric neurons in the gastric fundus and antrum, membrane potential imaging using Di-8-ANEPPS was applied. A small-volume injection led to neuronal compression. We analyzed the number of MEN and their firing frequency in addition to the involvement of selected mechanoreceptors. To characterize the neurochemical phenotype of MEN, we performed immunohistochemistry. KEY RESULTS: In the gastric fundus, 16% of the neurons reproducibly responded to mechanical stimulation and thus were MEN. Of those, 83% were cholinergic and 19% nitrergic. In the antrum, 6% of the neurons responded to the compression stimulus, equally distributed among cholinergic and nitrergic MEN. Defunctionalizing the sensory extrinsic afferents led to a significant drop in the number of MEN in both regions. CONCLUSION: We provided evidence for MEN in the gastric fundus and antrum and further investigated mechanoreceptors. However, the proportions of the chemical phenotypes of the MEN differed significantly between both regions. Further investigations of synaptic connections of MEN are crucial to understand the hardwired neuronal circuits in the stomach.


Asunto(s)
Fundus Gástrico , Neuronas , Cobayas , Humanos , Animales , Neuronas/fisiología , Estómago/fisiología , Intestino Delgado , Colinérgicos , Antro Pilórico
14.
Cells ; 12(4)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36831246

RESUMEN

Cocaine is one of the most consumed illegal drugs among (young) adults in the European Union and it exerts various acute and chronic negative effects on psychical and physical health. The central mechanism through which cocaine initially leads to improved performance, followed by addictive behavior, has already been intensively studied and includes effects on the homeostasis of the neurotransmitters dopamine, partly mediated via nicotinic acetylcholine receptors, and serotonin. However, effects on the peripheral nervous system, including the enteric nervous system, are much less understood, though a correlation between cocaine consumption and gastrointestinal symptoms has been reported. The aim of the present study was to gain more information on the effects of cocaine on enteric neuronal functions and the underlying mechanisms. For this purpose, functional experiments using an organ bath, Ussing chamber and neuroimaging techniques were conducted on gastrointestinal tissues from guinea pigs. Key results obtained are that cocaine (1) exhibits a stimulating, non-neuronal effect on gastric antrum motility, (2) acutely (but not chronically) diminishes responses of primary cultured enteric neurons to nicotinic and serotonergic stimulation and (3) reversibly attenuates neuronal-mediated intestinal mucosal secretion. It can be concluded that cocaine, among its central effects, also alters enteric neuronal functions, providing potential explanations for the coexistence of cocaine abuse and gastrointestinal complaints.


Asunto(s)
Cocaína , Sistema Nervioso Entérico , Animales , Cobayas , Cocaína/farmacología , Intestino Delgado , Neuronas , Tracto Gastrointestinal
15.
Sci Rep ; 13(1): 14665, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673919

RESUMEN

The aim of the study was to investigate the effect of N-arachidonoylethanolamide (AEA), an endocannabinoid with orexigenic characteristics, on plasma endocannabinoid concentrations, feed intake, energy balance, lipomobilisation, and hepatic lipid metabolism of early-lactating dairy cows. The experiment involved 10 pairs of Holstein half-sibling cows (end of 2nd-3rd pregnancy). Half-sibs of each pair were randomly assigned to either AEA (n = 10) or control (CON) group (n = 10). From day 1 to 30 postpartum, the AEA group received 5 intraperitoneal injections per week of 3 µg/kg body weight AEA and the CON group 0.9% NaCl. In week 1-3 postpartum, AEA administration had no effect on dry matter intake, body weight, or lipomobilisation, but increased plasma triglyceride concentration on d 21 p.p. and mRNA abundances of genes related to hepatic triglyceride synthesis. In week 4 postpartum, the AEA group showed reduced feed intake and whole-body carbohydrate oxidation, but increased whole-body fat oxidation and hepatic lipid accumulation, likely as a result of a counter-regulatory leptin increase. In conclusion, the present study shows a tissue-specific AEA insensitivity and may point to a leptin-controlled regulation of the ECS in early-lactation.


Asunto(s)
Endocannabinoides , Leptina , Animales , Femenino , Embarazo , Bovinos , Endocannabinoides/farmacología , Lactancia , Metabolismo de los Lípidos , Peso Corporal
16.
Animals (Basel) ; 13(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978562

RESUMEN

α2 agonists are frequently used in horses with colic, even though they have been shown to inhibit gastrointestinal motility. The aim of this study was to determine the effect of dexmedetomidine on small intestinal in vitro contractility during different phases of ischaemia. Experimental segmental jejunal ischaemia was induced in 12 horses under general anaesthesia, and intestinal samples were taken pre-ischaemia and following ischaemia and reperfusion. Spontaneous and electrically evoked contractile activity of the circular and longitudinal smooth muscles were determined in each sample with and without the addition of dexmedetomidine. During a second experiment, tetrodotoxin was added to determine if the effect was neurogenic. We found that the circular smooth muscle (CSM) contractility was not affected by ischaemia, whereas the longitudinal smooth muscle (LSM) showed an increase in both spontaneous and induced contractile activity. The addition of dexmedetomidine caused a decrease in the spontaneous contractile activity of CSM, but an increase in that of LSM, which was not mediated by the enteric nervous system. During ischaemia, dexmedetomidine also mildly increased the electrically induced contractile activity in LSM. These results may indicate a stimulatory effect of dexmedetomidine on small intestinal contractility. However, the influence of dexmedetomidine administration on intestinal motility in vivo needs to be further investigated.

17.
Sci Rep ; 13(1): 4967, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973308

RESUMEN

The aim of the study was to investigate the influence of intraperitoneal N-arachidonoylethanolamide (AEA) on taste preference for feed and water, tongue taste receptor signalling (TAS1R2, GNAT3), and endocannabinoid (CNR1, CNR2, GPR55) and opioid (OPRD1, OPRK1, OPRM1, OPRL1) receptors in the amygdala and nucleus accumbens in periparturient cows. We conducted taste preference tests using unaltered, umami-tasting, and sweet-tasting water and feed, before and after calving. After calving, eight cows received AEA injections (3 µg/(kg bodyweight × day), 25 days), whereas eight control (CON) cows received saline injections. Tissue was sampled 30 days after calving. Before calving, both cow groups preferred sweet-tasting feed and umami-tasting water. After calving, only the AEA-treated group preferred sweet-tasting feed, whereas the CON group showed no clear taste preference. In the amygdala, the mRNA expression of CNR1, OPRD1 (left hemisphere) and OPRK1 (right hemisphere) was lower in AEA animals than in CON animals, whereas no differences were found in the nucleus accumbens and tongue taste receptor expression. In conclusion, AEA administration enhanced existing taste preferences and reduced the expression of specific endocannabinoid and opioid receptors in the amygdala. The results support endocannabinoid-opioid interactions in the control of taste-dependent feed preference in early lactating cows.


Asunto(s)
Cannabinoides , Endocannabinoides , Femenino , Bovinos , Animales , Endocannabinoides/farmacología , Lactancia , Gusto , Receptores Opioides , Analgésicos Opioides/farmacología , Amígdala del Cerebelo , Agua
18.
PLoS One ; 18(4): e0282732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37053302

RESUMEN

It was suggested that intestinal mucosal secretion is enhanced during muscle relaxation and contraction. Mechanisms of mechanically induced secretion have been studied in rodent species. We used voltage clamp Ussing technique to investigate, in human and porcine colonic tissue, secretion evoked by serosal (Pser) or mucosal (Pmuc) pressure application (2-60 mmHg) to induce distension into the mucosal or serosal compartment, respectively. In both species, Pser or Pmuc caused secretion due to Cl- and, in human colon, also HCO3- fluxes. In the human colon, responses were larger in proximal than distal regions. In porcine colon, Pmuc evoked larger responses than Pser whereas the opposite was the case in human colon. In both species, piroxicam revealed a strong prostaglandin (PG) dependent component. Pser and Pmuc induced secretion was tetrodotoxin (TTX) sensitive in porcine colon. In human colon, a TTX sensitive component was only revealed after piroxicam. However, synaptic blockade by ω-conotoxin GVIA reduced the response to mechanical stimuli. Secretion was induced by tensile rather than compressive forces as preventing distension by a filter inhibited the secretion. In conclusion, in both species, distension induced secretion was predominantly mediated by PGs and a rather small nerve dependent response involving mechanosensitive somata and synapses.


Asunto(s)
Colon , Piroxicam , Humanos , Animales , Porcinos , Piroxicam/farmacología , Tetrodotoxina/farmacología , Prostaglandinas , Mucosa Intestinal , Cloruros
19.
Biology (Basel) ; 12(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37372145

RESUMEN

In pregnant bitches, the response to oxytocin and denaverine hydrochloride in dystocia management is usually poor. To better understand the effect of both drugs on myometrial contractility, the circular and longitudinal muscle layers were examined in an organ bath. For each layer, three myometrial strips were stimulated twice, each with one of three oxytocin concentrations. The effect of denaverine hydrochloride was studied once in direct combination with oxytocin and alone with subsequent oxytocin administration. Contractions were recorded and evaluated for average amplitude, mean force, area under the curve (AUC), and frequency. Effects of different treatments were analyzed and compared within and between layers. In the circular layer, oxytocin significantly increased amplitude and mean force compared to untreated controls regardless of stimulation cycles or concentrations. In both layers, high oxytocin concentrations caused tonic contractions, while the lowest concentration created regular rhythmic contractions. Longitudinal layer tissue responded to oxytocin with a significantly decreased contractility when stimulated twice, presumably a sign of desensitization. Denaverine hydrochloride neither affected oxytocin induced contractions nor showed a priming effect to subsequent oxytocin. Thus, no benefit of denaverine hydrochloride on myometrial contractility was found in the organ bath. Our results suggest a better efficiency of low-dose oxytocin in canine dystocia management.

20.
Front Vet Sci ; 9: 933905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35990279

RESUMEN

Phenobarbital (PB) is one of the most important antiseizure drugs (ASDs) to treat canine idiopathic epilepsy (IE). The effect of PB on the taxonomic changes in gastrointestinal microbiota (GIM) and their functions is less known, which may explain parts of its pharmacokinetic and pharmacodynamic properties, especially its antiseizure effect and drug responsiveness or drug resistance as well as its effect on behavioral comorbidities. Fecal samples of 12 dogs with IE were collected prior to the initiation of PB treatment and 90 days after oral PB treatment. The fecal samples were analyzed using shallow DNA shotgun sequencing, real-time polymerase chain reaction (qPCR)-based dysbiosis index (DI), and quantification of short-chain fatty acids (SCFAs). Behavioral comorbidities were evaluated using standardized online questionnaires, namely, a canine behavioral assessment and research questionnaire (cBARQ), canine cognitive dysfunction rating scale (CCDR), and an attention deficit hyperactivity disorder (ADHD) questionnaire. The results revealed no significant changes in alpha and beta diversity or in the DI, whereas only the abundance of Clostridiales was significantly decreased after PB treatment. Fecal SCFA measurement showed a significant increase in total fecal SCFA concentration and the concentrations of propionate and butyrate, while acetate concentrations revealed an upward trend after 90 days of treatment. In addition, the PB-Responder (PB-R) group had significantly higher butyrate levels compared to the PB-Non-Responder (PB-NR) group. Metagenomics of functional pathway genes demonstrated a significant increase in genes in trehalose biosynthesis, ribosomal synthesis, and gluconeogenesis, but a decrease in V-ATPase-related oxidative phosphorylation. For behavioral assessment, cBARQ analysis showed improvement in stranger-directed fear, non-social fear, and trainability, while there were no differences in ADHD-like behavior and canine cognitive dysfunction (CCD) scores after 90 days of PB treatment. While only very minor shifts in bacterial taxonomy were detected, the higher SCFA concentrations after PB treatment could be one of the key differences between PB-R and PB-NR. These results suggest functional changes in GIM in canine IE treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA