Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(31): 21280-21295, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39044394

RESUMEN

The actinide elements are attractive alternatives to transition metals or lanthanides for the design of exchange-coupled multinuclear single-molecule magnets. However, the synthesis of such compounds is challenging, as is unraveling any contributions from exchange coupling to the overall magnetism. To date, only a few actinide compounds have been shown to exhibit exchange coupling and single-molecule magnetism. Here, we report triangular uranium(III) clusters of the type (CpiPr5)3U3X (1-X; X = Cl, Br, I; CpiPr5 = pentaisopropylcyclopentadienyl), which are synthesized via reaction of the aryloxide-bridged precursor (CpiPr5)2U2(OPhtBu)4 with excess Me3SiX. Spectroscopic analysis suggests the presence of covalency in the uranium-halide interactions arising from 5f orbital participation in bonding. The dc magnetic susceptibility data reveal the presence of antiferromagnetic exchange coupling between the uranium(III) centers in these compounds, with the strength of the exchange decreasing down the halide series. Ac magnetic susceptibility data further reveal all compounds to exhibit slow magnetic relaxation under zero dc field. In 1-I, which exhibits particularly weak exchange, magnetic relaxation occurs via a Raman mechanism associated with the individual uranium(III) centers. In contrast, for 1-Br and 1-Cl, magnetic relaxation occurs via an Orbach mechanism, likely involving relaxation between ground and excited exchange-coupled states. Significantly, in the case of 1-Cl, magnetic relaxation is sufficiently slow such that open magnetic hysteresis is observed up to 2.75 K, and the compound exhibits a 100-s blocking temperature of 2.4 K. This compound provides the first example of magnetic blocking in a compound containing only actinide-based ions, as well as the first example involving the uranium(III) oxidation state.

2.
J Am Chem Soc ; 146(27): 18714-18721, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38924484

RESUMEN

Mixed-valence dilanthanide complexes of the type (CpiPr5)2Ln2I3 (CpiPr5 = pentaisopropylcyclopentadienyl; Ln = Gd, Tb, Dy) featuring a direct Ln-Ln σ-bonding interaction have been shown to exhibit well-isolated high-spin ground states and, in the case of the Tb and Dy variants, a strong axial magnetic anisotropy that gives rise to a large magnetic coercivity. Here, we report the synthesis and characterization of two new mixed-valence dilanthanide compounds in this series, (CpiPr5)2Ln2I3 (1-Ln; Ln = Ho, Er). Both compounds feature a Ln-Ln bonding interaction, the first such interaction in any molecular compounds of Ho or Er. Like the Tb and Dy congeners, both complexes exhibit high-spin ground states arising from strong spin-spin coupling between the lanthanide 4f electrons and a single σ-type lanthanide-lanthanide bonding electron. Beyond these similarities, however, the magnetic properties of the two compounds diverge. In particular, 1-Er does not exhibit observable magnetic blocking or slow magnetic relaxation, while 1-Ho exhibits magnetic blocking below 28 K, which is the highest temperature among Ho-based single-molecule magnets, and a spin reversal barrier of 556(4) cm-1. Additionally, variable-field magnetization data collected for 1-Ho reveal a coercive field of greater than 32 T below 8 K, more than 6-fold higher than observed for the bulk magnets SmCo5 and Nd2Fe14B, and the highest coercive field reported to date for any single-molecule magnet or molecule-based magnetic material. Multiconfigurational calculations, supported by far-infrared magnetospectroscopy data, reveal that the stark differences in magnetic properties of 1-Ho and 1-Er arise from differences in the local magnetic anisotropy of the lanthanide centers.

3.
J Am Chem Soc ; 145(16): 8996-9002, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37068040

RESUMEN

The recent discovery of metal-metal bonding and valence delocalization in the dilanthanide complexes (CpiPr5)2Ln2I3 (CpiPr5 = pentaisopropylcyclopentadienyl; Ln = Y, Gd, Tb, Dy) opened up the prospect of harnessing the 4fn5dz21 electron configurations of non-traditional divalent lanthanide ions to access molecules with novel bonding motifs and magnetism. Here, we report the trinuclear mixed-valence clusters (CpiPr5)3Ln3H3I2 (1-Ln, Ln = Y, Gd), which were synthesized via potassium graphite reduction of the trivalent clusters (CpiPr5)3Ln3H3I3. Structural, computational, and spectroscopic analyses support valence delocalization in 1-Ln resulting from a three-center, one-electron σ bond formed from the 4dz2 and 5dz2 orbitals on Y and Gd, respectively. Dc magnetic susceptibility data obtained for 1-Gd reveal that valence delocalization engenders strong parallel alignment of the σ-bonding electron and the 4f electrons of each gadolinium center to afford a high-spin ground state of S = 11. Notably, this represents the first clear instance of metal-metal bonding in a molecular trilanthanide complex, and the large spin-spin exchange constant of J = 168(1) cm-1 determined for 1-Gd is only the second largest coupling constant characterized to date for a molecular lanthanide compound.

4.
J Am Chem Soc ; 144(48): 22193-22201, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36417568

RESUMEN

A small but growing number of molecular compounds have been isolated featuring divalent lanthanides with 4fn5dz21 electron configurations. While the majority of these possess trigonal coordination geometries, we previously reported the first examples of linear divalent metallocenes Ln(CpiPr5)2 (Ln = Tb, Dy; CpiPr5 = pentaisopropylcyclopentadienyl). Here, we report the synthesis and characterization of the remainder of the Ln(CpiPr5)2 (1-Ln) series (including Y and excluding Pm). The compounds can be synthesized through salt metathesis of LnI3 and NaCpiPr5 followed by potassium graphite reduction for Ln = Y, La, Ce, Pr, Nd, Gd, Ho, and Er, by in situ reduction during salt metathesis of LnI3 and NaCpiPr5 for Ln = Tm and Lu, or through salt metathesis from LnI2 and NaCpiPr5 for Ln = Sm, Eu, and Yb. Single crystal X-ray diffraction analyses of 1-Ln confirm a linear coordination geometry with pseudo-D5d symmetry for the entire series. Structural and ultraviolet-visible spectroscopy data support a 4fn+1 electron configuration for Ln2+ = Sm, Eu, Tm, and Yb and a 4fn5dz21 configuration for the other lanthanides ([Kr]4dz21 for Y2+). Characterization of 1-Ln (Ln = Y, La) using electron paramagnetic resonance spectroscopy reveals significant s-d orbital mixing in the highest occupied molecular orbital and hyperfine coupling constants that are the largest reported to date for divalent compounds of yttrium and lanthanum. Evaluation of the room temperature magnetic susceptibilities of 1-Ln and comparison with values previously reported for trigonal Ln2+ compounds suggests that the more pronounced 6s-5d mixing may be associated with weaker 4f-5d spin coupling.

5.
J Am Chem Soc ; 141(33): 12967-12973, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31375028

RESUMEN

The divalent metallocene complexes Ln(CpiPr5)2 (Ln = Tb, Dy) were synthesized through the KC8 reduction of Ln(CpiPr5)2I intermediates and represent the first examples of neutral, linear metallocenes for these elements. X-ray diffraction analysis, density functional theory calculations, and magnetic susceptibility measurements indicate a 4fn5d1 electron configuration with strong s/d mixing that supports the linear coordination geometry. A comparison of the magnetic relaxation behavior of the two divalent metallocenes relative to salts of their trivalent counterparts, [Ln(CpiPr5)2][B(C6F5)4], reveals that lanthanide reduction has opposing effects for dysprosium and terbium, with magnetic relaxation times increasing from TbIII to TbII and decreasing from DyIII to DyII. The impact of this effect is most notably evident for Tb(CpiPr5)2, which displays an effective thermal barrier to magnetic relaxation of 1205 cm-1 and a 100-s blocking temperature of 52 K, the highest values yet observed for any nondysprosium single-molecule magnet.

6.
J Am Chem Soc ; 136(4): 1650-62, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24383494

RESUMEN

Tungsten nitrido complexes of the form WN(NR2)3 [R = combinations of Me, Et, (i)Pr, (n)Pr] have been synthesized as precursors for the chemical vapor deposition of WN(x)C(y), a material of interest for diffusion barriers in Cu-metallized integrated circuits. These precursors bear a fully nitrogen coordinated ligand environment and a nitrido moiety (W≡N) designed to minimize the temperature required for film deposition. Mass spectrometry and solid state thermolysis of the precursors generated common fragments by loss of free dialkylamines from monomeric and dimeric tungsten species. DFT calculations on WN(NMe2)3 indicated the lowest gas phase energy pathway for loss of HNMe2 to be ß-H transfer following formation of a nitrido bridged dimer. Amorphous films of WN(x)C(y) were grown from WN(NMe2)3 as a single source precursor at temperatures ranging from 125 to 650 °C using aerosol-assisted chemical vapor deposition (AACVD) with pyridine as the solvent. Films with stoichiometry approaching W2NC were grown between 150 and 450 °C, and films grown at 150 °C were highly smooth, with a RMS roughness of 0.5 nm. In diffusion barrier tests, 30 nm of film withstood Cu penetration when annealed at 500 °C for 30 min.

7.
Science ; 375(6577): 198-202, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35025637

RESUMEN

Magnetic effects of lanthanide bonding Lanthanide coordination compounds have attracted attention for their persistent magnetic properties near liquid nitrogen temperature, well above alternative molecular magnets. Gould et al. report that introducing metal-metal bonding can enhance coercivity. Reduction of iodide-bridged terbium or dysprosium dimers resulted in a single electron bond between the metals, which enforced alignment of the other valence electrons. The resultant coercive fields exceeded 14 tesla below 50 and 60 kelvin for the terbium and dysprosium compounds, respectively. ­JSY

8.
Dalton Trans ; 43(24): 9226-33, 2014 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-24821611

RESUMEN

The partially fluorinated oxo-alkoxide tungsten(VI) complexes WO(OR)4 [4; R = C(CH3)2CF3, 5; R = C(CH3)(CF3)2] have been synthesized as precursors for chemical vapour deposition (CVD) of WOx nanocrystalline material. Complexes 4 and 5 were prepared by salt metathesis between sodium salts of the fluoroalkoxides and WOCl4. Crystallographic structure analysis allows comparison of the bonding in 4 and 5 as the fluorine content of the fluoroalkoxide ligands is varied. Screening of as a CVD precursor by mass spectrometry and thermogravimetric analysis was followed by deposition of WOx nanorods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA