Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Commun Nonlinear Sci Numer Simul ; 105: 106076, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34690462

RESUMEN

We analyse the time-series evolution of the cumulative number of confirmed cases of COVID-19, the novel coronavirus disease, for some African countries. We propose a mathematical model, incorporating non-pharmaceutical interventions to unravel the disease transmission dynamics. Analysis of the stability of the model's steady states was carried out, and the reproduction number R 0 , a vital key for flattening the time-evolution of COVID-19 cases, was obtained by means of the next generation matrix technique. By dividing the time evolution of the pandemic for the cumulative number of confirmed infected cases into different regimes or intervals, hereafter referred to as phases, numerical simulations were performed to fit the proposed model to the cumulative number of confirmed infections for different phases of COVID-19 during its first wave. The estimated R 0 declined from 2.452-9.179 during the first phase of the infection to 1.374-2.417 in the last phase. Using the Atangana-Baleanu fractional derivative, a fractional COVID-19 model is proposed and numerical simulations performed to establish the dependence of the disease dynamics on the order of the fractional derivatives. An elasticity and sensitivity analysis of R 0 was carried out to determine the most significant parameters for combating the disease outbreak. These were found to be the effective disease transmission rate, the disease diagnosis or case detection rate, the proportion of susceptible individuals taking precautions, and the disease infection rate. Our results show that if the disease infection rate is less than 0.082/day, then R 0 is always less than 1; and if at least 55.29% of the susceptible population take precautions such as regular hand washing with soap, use of sanitizers, and the wearing of face masks, then the reproduction number R 0 remains below unity irrespective of the disease infection rate. Keeping R 0 values below unity leads to a decrease in COVID-19 prevalence.

2.
Phys Rev Lett ; 126(21): 218102, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34114848

RESUMEN

We introduce a statistical and linear response theory of selective conduction in biological ion channels with multiple binding sites and possible point mutation. We derive an effective grand-canonical ensemble and generalized Einstein relations for the selectivity filter, assuming strongly coordinated ionic motion, and allowing for ionic Coulomb blockade. The theory agrees well with data from the KcsA K^{+} channel and a mutant. We show that the Eisenman relations for thermodynamic selectivity follow from the condition for fast conduction and find that maximum conduction requires the binding sites to be nearly identical.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/genética , Modelos Biológicos , Modelos Químicos , Mutación Puntual , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Fenómenos Biofísicos , Canales Iónicos/metabolismo , Modelos Genéticos , Modelos Moleculares , Canales de Potasio/química , Canales de Potasio/genética , Canales de Potasio/metabolismo , Termodinámica
3.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200226, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455554

RESUMEN

Nonlinear systems are abundant in nature. Their dynamics have been investigated very extensively, motivated partly by their multidisciplinary applicability, ranging from all branches of physical and mathematical sciences through engineering to the life sciences and medicine. When driven by external forces, nonlinear systems can exhibit a plethora of interesting and important properties-one of the most prominent being that of resonance. In the presence of a second, higher frequency, driving force, whether stochastic or deterministic/periodic, a resonance phenomenon arises that can generally be termed stochastic resonance or vibrational resonance. Operating a system in or out of resonance promises applications in several advanced technologies, such as the creation of novel materials at the nano, micro and macroscales including, but not limited to, materials having photonic band gaps, quantum control of atoms and molecules as well as miniature condensed matter systems. Motivated in part by these potential applications, this 2-part Theme Issue provides a concrete up-to-date overview of vibrational and stochastic resonances in driven nonlinear systems. It assembles state-of-the-art, original contributions on such induced resonances-addressing their analysis, occurrence and applications from either the theoretical, numerical or experimental perspectives, or through combinations of these. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

4.
Philos Trans A Math Phys Eng Sci ; 379(2198): 20210003, 2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-33840217

RESUMEN

Nonlinearity is ubiquitous in both natural and engineering systems. The resultant dynamics has emerged as a multidisciplinary field that has been very extensively investigated, due partly to the potential occurrence of nonlinear phenomena in all branches of sciences, engineering and medicine. Driving nonlinear systems with external excitations can yield a plethora of intriguing and important phenomena-one of the most prominent being that of resonance. In the presence of additional harmonic or stochastic excitation, two exotic forms of resonance can arise: vibrational resonance or stochastic resonance, respectively. Several promising state-of-the-art technologies that were not covered in part 2 of this theme issue are discussed here. They include inter alia the improvement of image quality, the design of machines and devices that exert vibrations on materials, the harvesting of energy from various forms of ambient vibration and control of aerodynamic instabilities. They form an important part of the theme issue as a whole, which is dedicated to an overview of vibrational and stochastic resonances in driven nonlinear systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 2)'.

5.
Philos Trans A Math Phys Eng Sci ; 379(2192): 20200227, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33455553

RESUMEN

The vibrational resonance (VR) phenomenon has received a great deal of research attention over the two decades since its introduction. The wide range of theoretical and experimental results obtained has, however, been confined to VR in systems with constant mass. We now extend the VR formalism to encompass systems with position-dependent mass (PDM). We consider a generalized classical counterpart of the quantum mechanical nonlinear oscillator with PDM. By developing a theoretical framework for determining the response amplitude of PDM systems, we examine and analyse their VR phenomenona, obtain conditions for the occurrence of resonances, show that the role played by PDM can be both inductive and contributory, and suggest that PDM effects could usefully be explored to maximize the efficiency of devices being operated in VR modes. Our analysis suggests new directions for the investigation of VR in a general class of PDM systems. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

6.
Phys Rev Lett ; 114(16): 166802, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25955068

RESUMEN

We address the enhancement of electron transport in semiconductor superlattices that occurs in combined electric and magnetic fields when cyclotron rotation becomes resonant with Bloch oscillations. We show that the phenomenon is regular in origin, contrary to the widespread belief that it arises through chaotic diffusion. The theory verified by simulations provides an accurate description of earlier numerical results and suggests new ways of controlling resonant transport.

7.
Phys Rev Lett ; 115(15): 155303, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26550733

RESUMEN

We compare the decay of turbulence in superfluid ^{4}He produced by a moving grid to the decay of turbulence created by either impulsive spin-down to rest or by intense ion injection. In all cases, the vortex line density L decays at late time t as L∝t^{-3/2}. At temperatures above 0.8 K, all methods result in the same rate of decay. Below 0.8 K, the spin-down turbulence maintains initial rotation and decays slower than grid turbulence and ion-jet turbulence. This may be due to a decoupling of the large-scale superfluid flow from the normal component at low temperatures, which changes its effective boundary condition from no-slip to slip.

8.
Anaesthesia ; 70(12): 1356-68, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26350998

RESUMEN

Depth of anaesthesia monitors usually analyse cerebral function with or without other physiological signals; non-invasive monitoring of the measured cardiorespiratory signals alone would offer a simple, practical alternative. We aimed to investigate whether such signals, analysed with novel, non-linear dynamic methods, would distinguish between the awake and anaesthetised states. We recorded ECG, respiration, skin temperature, pulse and skin conductivity before and during general anaesthesia in 27 subjects in good cardiovascular health, randomly allocated to receive propofol or sevoflurane. Mean values, variability and dynamic interactions were determined. Respiratory rate (p = 0.0002), skin conductivity (p = 0.03) and skin temperature (p = 0.00006) changed with sevoflurane, and skin temperature (p = 0.0005) with propofol. Pulse transit time increased by 17% with sevoflurane (p = 0.02) and 11% with propofol (p = 0.007). Sevoflurane reduced the wavelet energy of heart (p = 0.0004) and respiratory (p = 0.02) rate variability at all frequencies, whereas propofol decreased only the heart rate variability below 0.021 Hz (p < 0.05). The phase coherence was reduced by both agents at frequencies below 0.145 Hz (p < 0.05), whereas the cardiorespiratory synchronisation time was increased (p < 0.05). A classification analysis based on an optimal set of discriminatory parameters distinguished with 95% success between the awake and anaesthetised states. We suggest that these results can contribute to the design of new monitors of anaesthetic depth based on cardiovascular signals alone.


Asunto(s)
Anestesia , Frecuencia Cardíaca/efectos de los fármacos , Éteres Metílicos/farmacología , Propofol/farmacología , Respiración/efectos de los fármacos , Vigilia , Adulto , Electrocardiografía/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sevoflurano , Temperatura Cutánea
9.
Phys Biol ; 10(2): 026007, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23481350

RESUMEN

We report self-consistent Brownian dynamics simulations of a simple electrostatic model of the selectivity filters (SF) of calcium ion channels. They reveal regular structure in the conductance and selectivity as functions of the fixed negative charge Qf at the SF. With increasing Qf, there are distinct regions of high conductance (conduction bands) M0, M1, M2 separated by regions of almost zero-conductance (stop-bands). Two of these conduction bands, M1 and M2, are related to the saturated calcium occupancies of P = 1 and P = 2, respectively and demonstrate self-sustained conductivity. Despite the model's limitations, its M1 and M2 bands show high calcium selectivity and prominent anomalous mole fraction effects and can be identified with the L-type and RyR calcium channels. The non-selective band M0 can be identified with a non-selective cation channel, or with OmpF porin.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Simulación por Computador , Modelos Biológicos , Canales de Calcio/química , Conductividad Eléctrica , Electricidad Estática
10.
Phys Rev Lett ; 110(6): 064101, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23432245

RESUMEN

We consider the Kuramoto model of an ensemble of interacting oscillators allowing for an arbitrary distribution of frequencies and coupling strengths. We define a family of traveling wave states as stationary in a rotating frame, and derive general equations for their parameters. We suggest empirical stability conditions which, for the case of incoherence, become exact. In addition to making new theoretical predictions, we show that many earlier results follow naturally from our general framework. The results are applicable in scientific contexts ranging from physics to biology.

11.
Phys Rev Lett ; 110(17): 175303, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679742

RESUMEN

We have studied the interaction of metastable 4He2* excimer molecules with quantized vortices in superfluid 4He in the zero temperature limit. The vortices were generated by either rotation or ion injection. The trapping diameter of the molecules on quantized vortices was found to be 96±6 nm at a pressure of 0.1 bar and 27±5 nm at 5.0 bar. We have also demonstrated that a moving tangle of vortices can carry the molecules through the superfluid helium.

12.
Ultrasonics ; 135: 107110, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37499283

RESUMEN

We investigate the effect of amplitude-modulated acoustic irradiation on the dynamics of a charged bubble vibrating in a liquid. We show that the potential V(x) of the bubble, and the number and stability of its equilibria, depend on the magnitude of the charge it carries. Under high-frequency amplitude-modulation, a modulation threshold, Gth, was found for the onset of increased bubble amplitude oscillations. For some pressure field values, charge can facilitate the control of chaotic dynamics via reversed period-doubling bifurcation sequences. There is evidence for peak-shouldering and shock waves. The Mach number increases rapidly with the drive amplitude G. In the supersonic regime, for G>1.90Pa, the high-frequency modulation raises both Blake's and the transient cavitation thresholds. We found a decrease in the bubble's maximum charge threshold, and threshold modulation amplitude for the occurrence Vibrational resonance (VR). VR occurs due to the modulated oscillatory pressure field, and the influence on VR of the electrostatic charge, and other parameters of the system are investigated. In contrast to the cases of VR reported earlier, where the amplitude G of the high-frequency driving is typically much higher than the amplitude of the low-frequency driving (Ps), the VR resonance peaks occur here at relatively low G values (0

13.
Ultrason Sonochem ; 70: 105346, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33011444

RESUMEN

The phenomenon of vibrational resonance (VR) has been investigated in a Rayleigh-Plesset oscillator for a gas bubble oscillating in an incompressible liquid while driven by a dual-frequency force consisting of high-frequency, amplitude-modulated, weak, acoustic waves. The complex equation of the Rayleigh-Plesset bubble oscillator model was expressed as the dynamics of a classical particle in a potential well of the Liénard type, thus allowing us to use both numerical and analytic approaches to investigate the occurrence of VR. We provide clear evidence that an acoustically-driven bubble oscillates in a time-dependent single or double-well potential whose properties are determined by the density of the liquid and its surface tension. We show both theoretically and numerically that, besides the VR effect facilitated by the variation of the parameters on which the high-frequency depends, amplitude modulation, the properties of the liquid in which the gas bubble oscillates contribute significantly to the occurrence of VR. In addition, we discuss the observation of multiple resonances and their origin for the double-well case, as well as their connection to the low frequency, weak, acoustic force field.

14.
Phys Rep ; 488(2-3): 51-110, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20396667

RESUMEN

The application of methods drawn from nonlinear and stochastic dynamics to the analysis of cardiovascular time series is reviewed, with particular reference to the identification of changes associated with ageing. The natural variability of the heart rate (HRV) is considered in detail, including the respiratory sinus arrhythmia (RSA) corresponding to modulation of the instantaneous cardiac frequency by the rhythm of respiration. HRV has been intensively studied using traditional spectral analyses, e.g. by Fourier transform or autoregressive methods, and, because of its complexity, has been used as a paradigm for testing several proposed new methods of complexity analysis. These methods are reviewed. The application of time-frequency methods to HRV is considered, including in particular the wavelet transform which can resolve the time-dependent spectral content of HRV. Attention is focused on the cardio-respiratory interaction by introduction of the respiratory frequency variability signal (RFV), which can be acquired simultaneously with HRV by use of a respiratory effort transducer. Current methods for the analysis of interacting oscillators are reviewed and applied to cardio-respiratory data, including those for the quantification of synchronization and direction of coupling. These reveal the effect of ageing on the cardio-respiratory interaction through changes in the mutual modulation of the instantaneous cardiac and respiratory frequencies. Analyses of blood flow signals recorded with laser Doppler flowmetry are reviewed and related to the current understanding of how endothelial-dependent oscillations evolve with age: the inner lining of the vessels (the endothelium) is shown to be of crucial importance to the emerging picture. It is concluded that analyses of the complex and nonlinear dynamics of the cardiovascular system can illuminate the mechanisms of blood circulation, and that the heart, the lungs and the vascular system function as a single entity in dynamical terms. Clear evidence is found for dynamical ageing.

15.
Phys Rev E ; 101(5-1): 052216, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32575245

RESUMEN

We investigate the response of a quantum particle in the Tietz-Hua quantum potential driven by biharmonic fields: a low-frequency force and a very high frequency force. The response is characterized by the occurrence of a maximum in the first-order transition probability amplitude |s|^{2} under the influence of the applied fields. It is shown that in the absence of the high-frequency component of the applied fields, |s|^{2} shows a distinct sequence of resonances, whereas an increase in the amplitude of the high-frequency field induces minima in |s|^{2}. However, the |s|^{2} maximum occurs in the low-frequency regime where it may be considered otherwise weak in the presence of a single harmonic force.

16.
Biochim Biophys Acta Biomembr ; 1862(9): 183301, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32360369

RESUMEN

Mutation-induced transformations of conductivity and selectivity in NaChBac bacterial channels are studied experimentally and interpreted within the framework of ionic Coulomb blockade (ICB), while also taking account of resonant quantised dehydration (QD) and site protonation. Site-directed mutagenesis and whole-cell patch-clamp experiments are used to investigate how the fixed charge Qf at the selectivity filter (SF) affects both valence selectivity and same-charge selectivity. The new ICB/QD model predicts that increasing ∣Qf∣ should lead to a shift in selectivity sequences toward larger ion sizes, in agreement with the present experiments and with earlier work. Comparison of the model with experimental data leads to the introduction of an effective charge Qf∗ at the SF, which was found to differ between Aspartate and Glutamate charged rings, and also to depend on position within the SF. It is suggested that protonation of the residues within the restricted space of the SF is important in significantly reducing the effective charge of the EEEE ring. Values of Qf∗ derived from experiments on divalent blockade agree well with expectations based on the ICB/QD model and have led to the first demonstration of ICB oscillations in Ca2+ conduction as a function of the fixed charge. Preliminary studies of the dependence of Ca2+ conduction on pH are qualitatively consistent with the predictions of the model.


Asunto(s)
Secuencia de Aminoácidos/genética , Líquidos Iónicos/química , Canales de Sodio/química , Ácido Aspártico/química , Calcio/metabolismo , Ácido Glutámico/química , Iones/química , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Canales de Sodio/genética
17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021925, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19792169

RESUMEN

A self-consistent analytic approach is introduced for the estimation of the access resistance and the current through an open ion channel for an arbitrary number of species. For an ion current flowing radially inward from infinity to the channel mouth, the Poisson-Boltzmann-Nernst-Planck equations are solved analytically in the bulk with spherical symmetry in three dimensions, by linearization. Within the channel, the Poisson-Nernst-Planck equation is solved analytically in a one-dimensional approximation. An iterative procedure is used to match the two solutions together at the channel mouth in a self-consistent way. It is shown that the current-voltage characteristics obtained are in good quantitative agreement with experimental measurements.


Asunto(s)
Conductividad Eléctrica , Activación del Canal Iónico , Canales Iónicos/metabolismo , Modelos Biológicos , Difusión , Canales Iónicos/química , Modelos Lineales , Porosidad , Electricidad Estática
18.
New J Phys ; 11(9)2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-20823955

RESUMEN

We use drift and diffusion coefficients to reveal interactions between different oscillatory processes underlying a complex signal and apply the method to EEG delta and theta frequencies in the brain. By analysis of data recorded from rats during anaesthesia we consider the stability and basins of attraction of fixed points in the phase portrait of the deterministic part of the retrieved stochastic process. We show that different classes of dynamics are associated with deep and light anaesthesia, and we demonstrate that the predominant directionality of the interaction is such that theta drives delta.

19.
J Stat Mech ; 20092009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21151767

RESUMEN

We discuss open problems related to the stochastic modeling of cardiac function. The work is based on an experimental investigation of the dynamics of heart rate variability (HRV) in the absence of respiratory perturbations. We consider first the cardiac control system on short time scales via an analysis of HRV within the framework of a random walk approach. Our experiments show that HRV on timescales of less than a minute takes the form of free diffusion, close to Brownian motion, which can be described as a non-stationary process with stationary increments. Secondly, we consider the inverse problem of modeling the state of the control system so as to reproduce the experimentally observed HRV statistics of. We discuss some simple toy models and identify open problems for the modelling of heart dynamics.

20.
Microvasc Res ; 76(3): 224-32, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18721820

RESUMEN

Laser Doppler flowmetry (LDF) of forearm skin blood flow, combined with iontophoretically-administered acetylcholine and sodium nitroprusside and wavelet spectral analysis, was used for noninvasive evaluation of endothelial function in 17 patients newly diagnosed with New York Heart Association class II-III congestive heart failure (CHF). After 20+/-10 weeks' treatment with a beta(1)-blocker (Bisoprolol), the measurements were repeated. Measurements were also made on an age- and sex-matched group of healthy controls (HC). In each case data were recorded for 30 min. In HC, the difference in absolute spectral amplitude of LDF oscillations between the two vasodilators manifests in the frequency interval 0.005-0.0095 Hz (p<0.01); this difference is initially absent in patients with CHF, but appears following the beta(1)-blocker treatment (p<0.01). For HC, the difference between the two vasodilators also manifests in normalised spectral amplitude in 0.0095-0.021 Hz (p<0.05). This latter difference is absent in CHF patients and is unchanged by treatment with beta(1)-blockers. It is concluded that there are two oscillatory skin blood flow components associated with endothelial function. Both are reduced in CHF. Activity in the lower frequency interval is restored by beta(1)-blocker treatment, confirming the association between CHF and endothelial dysfunction but suggesting the involvement of two distinct mechanisms.


Asunto(s)
Antagonistas Adrenérgicos beta/uso terapéutico , Bisoprolol/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Acetilcolina/farmacología , Anciano , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Velocidad del Flujo Sanguíneo/fisiología , Estudios de Casos y Controles , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiopatología , Femenino , Humanos , Flujometría por Láser-Doppler , Masculino , Persona de Mediana Edad , Nitroprusiato/farmacología , Oscilometría , Piel/irrigación sanguínea , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA